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The SCADLS procedure is a SAS R© implementation for the SCAD-penalized variable
selection method, in the context of linear regression models. It was written for SAS R©,
Version 9.1 or higher, for Windows R©.1 Its goal is to select a parsimonious and well-
fitting subset of a large number of potential predictor variables for a linear regression,
and automatically fit an adjusted regression equation to this subset.

SCAD-penalized regression, as described by Fan and Li (2001), is a way of construct-
ing a regression model by doing predictor variable selection and coefficient estimation
together. This is done by optimizing a penalized least squares criterion that expresses a
balance between good fit and parsimony. The primary outcome is a list of regression co-
efficients which have been modified somewhat from the ordinary least-squares regression
estimates. In particular, some of the new coefficients, whose least-squares estimates were
near zero, are set to exactly zero in order to simplify the model. In other words, variable
subset selection is performed automatically. This is somewhat similar to a thresholding
approach in which coefficients judged insignificant are deleted from the model. However,
SCAD applies a more nuanced approach; in particular, coefficients which were barely
large enough not to be deleted are still shrunken somewhat (biased towards zero) in an
attempt to reduce unnecessary sampling variance. Large coefficients are left close to their
least-squares value under the selected model.

Key features of PROC SCADLS include the following:

• The penalty tuning parameter λ can be selected automatically using an adapted ver-
sion of either the Generalized Cross-Validation (GCV) criterion or the the Schwarz
Bayesian Information Criterion (BIC), depending on the user’s choice. λ controls
the number of variables in the selected subset, as well as the size of the shrinkage
adjustment to their estimated coefficients (see Fan and Li, 2001).

• Variables of special theoretical or practical importance may be forced into the final
model.

• Standard error estimates are calculated using a sandwich formula as in Fan and Li
(2001).

• Categorical predictors can be included via a CLASS statement.

The previous version of PROC SCADLS, version 1.1 released in May 2010, was for
32-bit SAS installations only. The current version implements some minor bug fixes and
is available for both 32-bit and 64-bit SAS installations.

The SCAD estimation procedure differs from older methods (e.g., stepwise selection
and best-subsets) in that some of the retained coefficients may be shrunken (biased to-
wards zero). This could be thought of as adjusting for uncertainty in whether or not to
exclude the variable. This is an attempt to reduce error variance and improve upon the

1SAS and all other SAS Institute Inc. product or service names are registered trademarks or trade-
marks of SAS Institute Inc. in the USA and other countries. R© indicates USA registration. Windows R©is
a trademark of Microsoft Corporation.
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discontinuous and somewhat unstable nature of the older methods (see Breiman, 1995,
1996; Fan and Li, 2001).

Section 2 explains the syntax for using PROC SCADLS, and section 3 describes the
special case where some predictor variables are categorical rather than numerical. Section
4 describes special considerations and situations. Appendix A on page 19 describes the
theoretical background, properties, and implementation of SCAD in more detail; it may
be skipped by a user who wishes to begin using PROC SCADLS quickly. Appendix B on
page 30 provides detailed examples of using PROC SCADLS.
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1 SCAD-Penalized Linear Regression

As mentioned above, PROC SCADLS is a new procedure for SAS that performs SCAD-
penalized least squares regression estimation, particularly for linear models with roughly
normally distributed outcomes. For categorical or count outcomes, one can use PROC
SCADGLIM instead.

Like the classic multiple regression methods (such as those in PROC REG or PROC
GLM in SAS), PROC SCADLS is intended to estimate the parameters of a linear model
to predict the value of a response variable Y from predictor variables X1,...,Xp. For
example, Y could be a measure of a person’s mood, income, or health, and X1,...,Xp are
various other variables which may be useful in predicting Y . Also like classical regression
modeling, it is assumed that the value of Y is related to these predictors linearly: for a
given case i, Yi = µi + εi where the εi have mean 0 and some constant variance σ2, and

µi = β0 + β1x1 + β2x2 + . . .+ βpxp.

However, in the SCAD approach it is additionally assumed that some of the β’s are
equal to 0 (or at least so close to zero that they can be practically treated as such) while
the others are not, and that it is desired to find out which β’s are in each of these two
categories. Thus, the goal is to select and estimate the nonzero coefficients while leaving
the others at zero. To do this, the SCAD approach is to find the values of β1,...,βp which
optimize a special function taking into account both how well the estimated model fits
the in-sample data (in terms of the squared errors, for PROC SCADLS, or the likelihood,
for PROC SCADGLIM), and the number and size of the nonzero coefficients.

Thus, SCAD is a variable selection method, similar in purpose to stepwise or best-
subsets variable selection, since the predictors with zero coefficients are considered to be
deleted from the model. However, SCAD is a somewhat different approach in that it
treats selection and estimation together as a single optimization problem.
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2 Syntax for PROC SCADLS

The syntax for the SCADLS procedure is shown below. Bold-face text indicates required
syntax. Text enclosed in < and > indicate places where names or special keywords may be
included. Default values are underlined. As usual in SAS, the syntax is not case-sensitive.

PROC SCADLS DATA = < dataset name > < options > ;

MODEL < variable name > = < list of variable names > < options > ;

FORCEIN < list of variable names >;
CLASS < list of variable names >; < options >
SELECTION < GCV or BIC >;
DF < COUNT or PROJECTION >;
ALGORITHM < ICM or LQA >;
CRITERION < value (default is 10−9) >;
MAXITER < value (default is 250) >;
MINLAMBDA < value (default based on data) >;
MAXLAMBDA < value (default based on data) >;
GRIDSIZE < value (default is 400) >;
A < value (default is 3.70) >;

The default values for MINLAMBDA and MAXLAMBDA are calculated based on the
data.

2.1 Options

The available procedure options for use in the first line are DATA, OUTBETAS, OUT-
ERRS, OUTINFO, OUTPRED, DETAILS, ROBUST and NOPRINT. The only manda-
tory “option” argument is DATA, the name of the SAS dataset to be analyzed, which
works just as in other procedures such as PROC PRINT, MEANS, REG, etc. The dataset
must contain at least two variables (i.e., columns) and at least two complete cases (i.e.,
subjects, observations, rows) in order for the results to be meaningful. Also, as of the
current version of SCADLS the number of cases must be greater than the number of
variables.

The other procedure options, which may be omitted, are as follows:

• OUTBETAS = < dataset name >. Specifies the name of a dataset which will
be created, which will contain the coefficient estimates for all regression parameters
(including the intercept, unless NOINT has been specified).

• OUTERRS = < dataset name >. Specifies the name of a dataset which will be
created, which will contain the standard error estimates for all regression parameters
(including the intercept, unless NOINT has been specified).

• OUTINFO = < dataset name >. Specifies the name of a dataset which will be
created, which will contain some information about the solution, such as the number
of iterations required.
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• OUTPRED = < dataset name >. Specifies the name of a dataset which will
be created, which will contain predicted values ŷ for all observations in the original
dataset. You can then compute and analyze residuals by subtracting these from
the observed values (i.e., y − ŷ). As with SAS PROC REG, you can include extra
lines in the original dataset with values of interest for the predictors but a missing
value (“.”) for the response, in order to extract predicted values for these values
of interest. Predicted values are calculated as if the SCAD estimator β̂ were an
ordinary regression estimate, i.e., ŷi = xTi β̂.

• DETAILS. Causes extra details about the fitting procedure to be displayed on
standard output (i.e., the screen in Windows R©, or the list file if one has been set).
If the DETAILS option is not requested, only the most important basic information
is shown.

• NOPRINT. Specifies that no information at all be displayed. This would mainly
be of use in simulations or other automated analyses where the results of interest
will be read from the output datasets.

One option is available in the MODEL statement:

• NOINT. Specifies that no intercept parameter be included in the model (i.e., that
the intercept be fixed at zero). By default (if this keyword is left out), there is an
intercept.

There is also one CLASS statement option:

• DESCENDING. Specifies that the names of levels of categorical predictor variables
be sorted in reverse alphabetical order, with the comparison group being the last
in line (the first in alphabetical order). Otherwise, the SAS default is followed, and
the levels are presented in alphabetical order, with the comparison group being the
last in line (the last in alphabetical order).

The keywords in the rest of the syntax are as follows. The first is required:

• MODEL. Specifies the full model, of which SCAD will be used to choose a subset.
As in many SAS PROCedures such as PROC REG, it follows the form RESPONSE
= PREDICTORS. RESPONSE is the name of the variable in the working dataset
which will be treated as the response y (also known as the dependent variable
or outcome). Only one variable may be specified as the RESPONSE at a time.
PREDICTORS tells the names of the variables in the working dataset which will
be treated as the predictors x1, ..., xd (also known as the independent variables or
covariates). At least one variable must be available as a PREDICTOR. Theoreti-
cally there is no upper limit on the number of predictors. (However, currently the
SCADLS procedure only works when the number of predictors p is less than the
number of observations n, since x1, ..., xd are considered as predictors in the full
model. The p > n case, as in bioinformatics research, requires a different estimation
approach which has not yet been implemented here (see Zou and Li, 2007).)
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The following statements are optional. Of them, FORCEIN and SELECTION are the
most important to understand. The others are set at sensible defaults by the procedure
and most users should not have to worry about them.

• FORCEIN. Optional. Names certain predictors which should always be included
in the final model, i.e., are “forced in” regardless of the size of their coefficient
estimate. They will not be penalized or deleted. Every variable listed under FOR-
CEIN must also be listed as a predictor in the MODEL statement. You might want
to use the FORCEIN keyword if some of your predictors are especially important
for theoretical and practical reasons, or if submodels lacking a certain predictor of
particular interest would be considered uninterpretable even if they did well statis-
tically. For example, one of the predictor variables might be a pretest, or might
be one of the main substantive focuses of the study. Note that if FORCEIN is not
specified, no variables are forced in. Thus, all variables will be eligible for possible
deletion if their coefficient estimates are judged non-significant by the algorithm. In
the opposite extreme, if all variables are forced in, then the result is the ordinary
least-squares estimate for the full model. Note that there is no need for a “force
out” option because variables which are known not to be of interest may simply be
left out of the MODEL statement.

• CLASS. Optional. Names certain predictors which should be treated as categorical,
i.e., automatically recoded as dummy codes. The predictors may be text or numeri-
cal. However, since each observed level of the class variable, except for one baseline
level, gets its own dummy-coded variable, it is quite inadvisable to use a contin-
uously measured numeric variable. The CLASS statement here works somewhat
similarly to those found in PROC GLM, PROC GENMOD, PROC LOGISTIC,
and PROC MIXED. This is described further in Section 3.

• SELECTION. Optional. If specified, it must be either GCV or BIC. This chooses
whether the model should be more lightly penalized (GCV) or heavily penalized
(BIC). Fan and Li (2001) used GCV, but the default here is BIC because models
selected by GCV are not as sparse (see Wang et al., 2007).

• DF. Optional. If specified, it should be either COUNT or PROJ. This chooses
the way the size of the model should be measured while implementing the GCV
and BIC criteria. The default option, COUNT, specifies that the model size should
be treated simply as a count of nonzero coefficients. The other option, PROJEC-
TION or PROJ for short (either will work), specifies that the model size should be
measured in a way which takes shrinkage into account, by calculating the trace of
the approximate linear projection matrix (i.e., a smoothing or “hat” matrix) result-
ing from the penalized estimation. The PROJ option is more compatible with Fan
and Li (2001). However, the COUNT method is also reasonable (see Zou et al.,
2004) and is much faster computationally, so it is the default. For a given candidate
model, the PROJ option counts the selected model as being somewhat smaller than

8



the COUNT option would; as a result, the COUNT option leads on average to the
selection of a slightly smaller final model.

• ALGORITHM. Optional. If specified, it should be either LQA or ICM. This
chooses which algorithm will be used to find the coefficient estimates. The LQA
option is in keeping with Fan and Li (2001), but the ICM option is computationally
faster. They should give essentially the same results, so the ICM option is the
default.

• CRITERION. Optional. This defines the convergence criterion (i.e., tolerance).
For a given value of λ, the LQA or ICM algorithm continues to iterate until either
the maximum absolute difference between the coefficient estimates from the current
and previous iterations is less than CRITERION, or the number of iterations is
equal to MAXITER. The default is 10−9, which is written as either .000000001 or
10E-9 in SAS. It can be made lower (for more precision) or higher (for faster speed).
We recommend that CRITERION be no greater than 1E-7.

• MAXITER. Optional. For each value of λ in the grid of candidate lambdas, no
more than MAXITER iterations will be performed, in order to save time. If the
estimate has not converged yet after MAXITER iterations, it is left as it was on the
(MAXITER)th iteration. Once the optimal lambda value has been chosen, the final
model will be computed using up to 10×MAXITER iterations. If even this is not
enough for the final model to fully converge, the answer will be reported anyway
but a warning will be shown. We recommend that MAXITER be no less than 100
for ICM or 200 for LQA.

• MINLAMBDA. Optional. This will be the least value of λ considered in the grid
of candidate λ values. By default it will be calculated as σ/(20

√
n), where σ is a

rough estimate of the standard deviation of the response variable. This is a very
small amount of shrinkage. You might want to reset it to a higher value to force a
smaller model to be chosen. Alternatively, you might want to set it to zero, to allow
the ordinary least-squares (full-model) estimate to be potentially chosen if it is the
one with the best GCV or BIC.

• MAXLAMBDA. Optional. The counterpart to MINLAMBDA, this is the highest
candidate value considered in the lambda grid. The default is 5σ

√
log(n)/n.

• GRIDSIZE. Optional. This is the number of candidate values considered in the
lambda grid.

• A. Optional. This is a parameter that controls the shape of the SCAD penalty
function. a must be at least 2; as a→∞, SCAD acts more and more like LASSO.
The default value is 3.7 as recommended in Fan and Li (2001).

To show how to use this syntax in practice, Section 3 on page 11 describes how to
use the CLASS option to handle non-numerical predictor variables. Section 4 on page
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14 discusses other special challenges in particular situations. Appendix B on page 30
presents examples using real and simulated datasets.
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3 Categorical Predictors in PROC SCADLS: The

CLASS Statement

As is well known, multiple linear regression methods, including SCAD-penalized regres-
sion, require that the predictor variables be numerical, but in many situations we also
want to use categorical predictors. These predictors may be nominal (e.g., gender, ethnic
group, religion, ice cream flavor) or ordinal (e.g., rating of conditions as poor/fair/good).
Thus, we need a way to translate a categorical variable into one or more numerical ones.
Simply assigning a number to each level is obviously inadequate. For instance, if we code
Chocolate as 1, Strawberry as 2 and Vanilla as 3, and treat this as a numerical variable,
then we seem to be asserting that strawberry is halfway between chocolate and vanilla on
some numerical dimension of interest, which is arbitrary and incorrect.

The only time a categorical variable can be directly turned into a number is when
it has only two possible levels. For example, if we code male as 0 and female as 1, we
have reexpressed gender as a “femaleness” score which goes from low to high. This seems
somewhat arbitrary, since we could have used -1 and 1, or 1 and 2, instead of 0 and 1; or
we could have used 1 and 0 to get a “maleness” score. However, although each of these
options changes the regression coefficients in a predictable way (e.g., the last one causes the
sign to be reversed), none of them changes the assumptions, predicted values, or meaning
of the model. In particular, because each coding has only two levels, we do not have to
worry about which levels are between which other levels. The 0/1 coding scheme, called
“indicator” or “dummy coding,” is the most traditional in regression contexts (unlike
ANOVA-like analyses of designed experiments in which -1/1 is preferred).

The usual way, then, to handle variables with k ≥ 2 categories is to choose one level
as a baseline or comparison group, and then express each other group as a dummy code.
When we reexpressed gender as femaleness, we made “male” the baseline and we only
needed one dummy variable to account for the one non-baseline group. If we had made
female the baseline, the dummy coding would be reversed, but there would still only be
one dummy code. In the ice cream example, suppose we make vanilla the baseline and
create two new variables: chocolate-ness (1 for chocolate and 0 otherwise) and strawberry-
ness (1 for strawberry and 0 otherwise). We do not need a vanilla-ness variable because
the baseline is expressed by leaving all of the dummy codes at zero. In general, we need
k−1 dummy codes to express k categories. Once this recoding is done, we can ignore the
original categorical variable and use the k − 1 dummy codes instead.

There are three complications here. The first is the necessity of choosing a baseline.
In some cases the choice may be clear; in other cases it may be arbitrary. If you have a
prior preference of which category should be the baseline, you may wish to do the dummy
coding yourself. As an amusing toy example, suppose we are predicting mathematics
achievement from verbal IQ, nonverbal IQ, and flavor preference. DATA iceCream;

INPUT flavor$10. verbalIQ nonverbalIQ mathAchievement;

DATALINES;

Vanilla 116 121 116

Chocolate 132 119 112
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Vanilla 115 112 121

Strawberry 102 115 165

Vanilla 130 107 118

Chocolate 98 85 83

Chocolate 119 128 122

Vanilla 122 117 100

Strawberry 109 92 135

Vanilla 103 84 88

Strawberry 118 114 98

Vanilla 133 128 109

;

RUN;

We cannot enter the first variable directly into PROC SCADLS (or PROC REG, etc.)
because it is a text field, not a number. However, we can dummy-code it:

DATA iceCream; SET iceCream;

likesChocolate = 1*( flavor= "Chocolate" );

likesStrawberry = 1*( flavor= "Strawberry" );

RUN;

In this case we are supposing that the baseline is vanilla so we do not need a dummy
code for vanilla.

A second complication arises specifically with automated variable selection. Ordinarily
there is no protection against some of the dummy codes of a predictor being deleted.
(Cohen, 1991, discussed this problem in the context of stepwise selection.) In ordinary
regression on the full model, the meaning of the model does not depend on the choice of
baseline. However, if individual dummy-coded levels can be deleted, then the choice of
baseline matters somewhat more (since level A might be significantly different from level
B but not from level C). Choosing a very small baseline category may make estimates
unstable and can lead to a poor choice of model.

Some SAS procedures include an option to create dummy codes automatically for the
user’s convenience, especially in situations in which the choice of baseline level is not of
great interest. This is the CLASS statement in PROCs GENMOD, GLM, LOGISTIC
and MIXED (such a statement is not found in the original PROC REG). There is also
a similar CLASS statement in PROC SCADLS. This statement automatically generates
dummy codes for categorical predictors. Similar to the SAS default, the dummy codes
are generated in alphabetical order, and the baseline level is chosen to be the last in
alphabetical order. (The DESCENDING option allows the baseline level to be the first
in alphabetical order instead.)

However, we recommend writing one’s own recoding statements for especially impor-
tant predictors, and for predictors involved in interactions, because this requires the user
to think about what the baseline should be. As mentioned earlier, the baseline is more
important for SCADLS than for PROC’s which do not delete predictors. There might be
a theoretical reason to choose a baseline: for instance, we might want to use vanilla as
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the baseline since it is the mildest flavor, or maybe the cheapest for a certain company
to produce, or the most popular in the general population, etc. We do suggest that the
baseline category be chosen to be one of relatively high frequency in the data, either the
most common or one of the most common. Since the coefficients for the non-baseline
categories are defined by contrast with the baseline, a baseline category with only a few
observations might lead to a unstable model with high standard errors, and sometimes
too many deletions. Similarly, in handling categorical predictors which are thought to
interact, it is probably best to recode one’s own predictor variables rather than let this
be done automatically, and to include the relevant products of these recoded variables.
In a model with interactions, an effect codes scheme such as -1/+1 may be preferable
for reducing collinearity, in the same way that it may be helpful to center quantitative
variables; see West et al. (1996) or Myers and Well (2003) for more information.
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4 Tips for Special Situations

Several special challenges which sometimes arise in variable selection are discussed below.
Some such issues are handled well by PROC SCADLS, while others may require additional
work or different software.

4.1 Categorical Outcome Variables

Section 3 discussed how to deal with categorical predictor variables when the outcome is
numerical. In other situations, the outcome variable (not just the predictors) is categor-
ical. For instance, we may be predicting whether patients survive or die, given various
characteristics of their condition. SCADLS cannot handle this kind of data, but its com-
panion product SCADGLIM can do so.

4.2 Missing Data

PROC SCADLS deals with missing data as follows: For purposes of estimating the coef-
ficients and standard errors, cases with any missing values in the response or any of the
predictor variables are ignored (this is called “listwise deletion”). When calculating the
predicted values for the OUTBETAS option, cases with missing values in the response,
but no missing values in the predictor, are given a predicted value just like other cases.
Those with missing values in the predictors are also given a missing value in the response.
This is the same as the behavior of existing SAS regression procedures such as PROC
REG. Of course, listwise deletion is not the best approach to missing data in general —
it is often better to use a multiple imputation scheme when fitting a given model — but
the best way to do this depends on the investigator’s circumstances and assumptions, and
the question of how to handle missing data in the context of model selection uncertainty
requires more research. For more information see Collins et al. (2001), Little and Rubin
(2002), and Schafer and Graham (2002).

4.3 Skew and Outliers

It is well-known that least-squares regression, as well as variable selection and testing
techniques based upon it (including SCAD), are potentially vulnerable to model mis-
specification and to outliers. Robust methods are possible (see Fan and Li, 2001, for an
example with SCAD in robust regression with L1 predictive loss) but PROC SCADLS cur-
rently only supports SCAD-penalized least squares, which is much more straightforward
computationally. Regardless of the method being used, it is always important to check
the chosen model for notable violations of assumptions, especially by graphically examin-
ing the residuals. It is easy to calculate the residuals by subtracting the predicted values
(given by OUTPRED) from the observed values. Another possibly helpful alternative is
the ROBUST option in SCADGLIM.
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4.4 Interactions and the Hierarchical Principle

Often, the full model (1) will include possible interactions, represented as products of
observed predictors or dummy codes. Many investigators feel that if interactions are
included in a model, the associated main effects must also be included. That is, suppose
our predictors are x1, x2, and x3 ≡ x1x2. Then many people would say that a model which
included x3 will not be not very interpretable unless and x1 and x2 are also included.
This becomes an issue when using SCAD, or other numerical variable selection methods,
because it is quite possible for, say, x2 to be deleted while keeping x1 and x3. One way
to get around this is to perform selection in more than one step. For example, one might
exclude all interactions at first and consider only the observed predictors. Predictors
judged significant under this first wave would then be forced into a new model which
also included all of their possible interactions, and SCAD-penalized regression would be
applied again.
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A Appendix: Theory and Technical Details

A.1 Introduction to SCAD-Penalized Estimation

The SCAD approach to regression combines model selection and coefficient estimation in
a single procedure in hopes of providing a simple and standardized approach to exploring
large datasets. In the linear models context, this is done by iteratively solving modified
normal equations that minimize not the usual least squares criterion, but a penalized
version of this criterion that attempts to control both the number of parameters and the
size of these parameters, to avoid overfitting.

Recall that in multiple linear regression, the goal is to create a model for predicting
future values of a numerical response y from p predictor variables x1, x2, ..., xp. The model
is assumed to be of the form

y = β0 +

p∑
j=1

xjβj + ε (1)

where ε is an error term and the β’s are unknown constants. To fit the model, we
estimate the β’s by collecting a sample of data and minimizing the squared error criterion
or “residual sum squares”

RSS =
n∑
i=1

(yi − (β0 +

p∑
j=1

xijβj))
2 (2)

where n is the number of subjects (cases) in the sample. This least-squares regression is
done very easily by SAS PROC REG and countless other computer software packages.

However, one very common problem in practice is that the number p of predictor
variables may be inconveniently large. A large model is harder to interpret and may have
less precise coefficient estimates than a smaller model. Therefore, it is common to fit
various smaller models using different subsets of the predictors used in the full model (1),
and then try to choose one which is parsimonious but still fits the data well.

Preferably, the choice of a model should be made carefully, incorporating personal
judgment, prior knowledge and experience, and knowledge about the uses to which a
model will be put. However, besides these issues which need to be subjectively considered,
it is still useful to have a simple criterion that shows how much the data favor a given
model. RSS wouldn’t work for this, because by definition, comparing the candidate models
on RSS itself would always lead to choosing the fullest, most flexible model available,
rather than any of its constrained subsets. This is a form of overfitting, in that past a
certain point, predictors may be “fitting noise” (modeling random idiosyncracies of the
observed sample) rather than generalizable population patterns. Therefore, it is natural
to consider putting a penalty or constraint on the size of the model, in order to get a
more realistic measure of fit.

Among the classic penalized fit criteria are Mallows’ Cp (Mallows 1973; see also George
2000) and the closely related Akaike’s Information Criterion (AIC; Akaike 1973) and
Generalized Cross-Validation (GCV; see Craven and Wahba 1979, Golub et al. 1979)
criteria; as well as the stricter and more parsimonious Bayesian Information Criterion
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(BIC; Schwarz 1978).2 It is very common to use one or more of these criteria in an
attempt to choose the “best” subset of the pool of available predictor variables, either by
considering all subsets or by following a “stepwise” heuristic. This is supported in, e.g.,
SAS PROC REG (SAS, 2004).

All of these criteria measure the size of a model by counting the number of coefficients
which need to be estimated under this model, which is equivalent to the number of
predictors included. In the linear models context, these criteria are roughly equivalent to
a penalized least squares criterion

RSS/σ2
e + λ0dM

where dM is the number of predictors in the model and λ0 is a constant determining the
size of the penalty; λ0 is approximately 2 for AIC and GCV and log(n) for BIC. Here
σ2
e is the error variance. This approach assigns a number to each subset of potential

predictor variables, and we call the subset with the lowest such number “best.” In the
Cp/GCV/AIC context, “best” means the subset which is predicted to have the best pre-
dictive performance on future data from the same population. In the BIC context “best”
means the subset which is the most probable true model under an approximation to a
certain Bayesian model selection scenario. These criteria are crude but can be very useful
in practice. BIC tends to select smaller models than AIC. For more information on them,
see Shao (1997), Zucchini (2000), Burnham and Anderson (2002, 2004), Kuha (2004), or
Yang (2005).

Consider the full model (1), i.e., the one containing all d available predictors. Notice
that a predictor has an effect in the model if and only if its coefficient is nonzero. Thus,
when we delete a predictor from the model (whether this is done a priori; or on the basis of
AIC, BIC, etc; or on the basis of not being judged significant using a hypothesis test, etc.)
it is the same thing as if we constrained its coefficient to be zero and then reestimated the
model under this constraint. The predictors which are chosen to be set to zero are usually
those for which the absolute values of the least-squares estimates of the coefficients, under
the full model, were small (i.e., not statistically significant at some level).

Thus, to look at it another way, selecting a subset in a data-driven way is roughly
like applying a “hard threshold” where the final model estimate for coefficient j is 0 if
the size of the initial full-model estimate |β̂j| is less than some threshold tj.

3 We might

get an entirely different model if we observe |β̂j| = tj + .01 instead of |β̂j| = tj − .01
(see Figure 2). Thus, although in one sense we are reducing error variance by choosing

2Important: Note that SAS PROC REG uses the abbreviation BIC to stand for a different Bayesian
criterion by Sawa (1978), and the standard Schwarz BIC used here is denoted as SBC in the native SAS
procedures.

3This characterization is somewhat too simplistic, since in general (unless all predictors are perfectly
orthogonal) the deletion or inclusion of a given predictors depends on the deletion or inclusion of other
predictors in a complex way. The nature of this dependence differs according to whether we are using a
forward, backward, or stepwise selection, best subset selection, or marginal significance testing approach.
However, ignoring this dependence and considering the simple thresholding model provides a useful insight
about classical variable selection methods: The inclusion or exclusion of a variable is a rather simplistic
yes-or-no decision which can be very dependent on small changes in the data.
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a smaller model, we are also introducing new error variance related to uncertainty about
which submodel is correct.

Compare this kind of behavior to that of a very different approach to dealing with
the problem of many competing predictor variables: ridge regression. Ridge regression
was proposed by Hoerl and Kennard (1970) and is described further in various texts such
as Sen and Srivastava (1990) and Neter et al. (1996). By introducing some bias to the
regression coefficients, it prevents the error variance of regression estimates from exploding
in adverse situations such as high collinearity or low sample size. Unlike subset selection
methods which minimize RSS + λdM , ridge regression minimizes RSS + λ

∑d
j=1 β

2
j . In

both cases, the penalty is intended to keep the model from getting too “large” in some
sense, but the subset selection penalty is trying to control the dimension (number of free
predictors) of the model while the ridge regression penalty is trying to control the size of
the included coefficients.

The ridge regression estimator is stable (not likely to be heavily changed by small
changes in the data) because it is a continuous function of the original data. On the
other hand, the post-subset-selection estimator is unstable because of all the dichotomous
decisions that have to be made about the individual coefficients. This shows an advantage
of ridge regression over subset selection. However, a disadvantage of ridge regression is
that although it shrinks coefficients, it never shrinks them all the way to zero as model
selection does; i.e., it always includes all available predictors. Someone desiring a smaller
and more easily interpreted model still needs to stay with subset selection instead of ridge
regression, despite concerns about instability.

A possible compromise approach, the LASSO (Least-Absolute Shrinkage and Selection
Operator) was suggested by Tibshirani (1996). Mathematically, this is similar to ridge
regression but penalizes the absolute values, rather than squares, of coefficients. That is,
the LASSO criterion is RSS + λ

∑d
j=1 |βj|. This criterion differs from ridge regression in

that it is able to set some coefficients to zero (see Tibshirani, 1996, 2002; Fu, 1998, for
insights as to why this occurs). That is, it combines model selection (deletion) with model
stabilization (shrinkage). The LASSO criterion at first looks very difficult to minimize,
but can be tackled using either a specialized “shooting” algorithm (Fu, 1998), a local
quadratic approximation algorithm (Fu, 1998; Öjelund et al., 2002; Fan and Li, 2001),
or the new and extremely fast LARS algorithm (Efron et al., 2004). Heuristically, the
LASSO is midway between subset selection (which bases the penalty for a coefficient only
on whether a coefficient is zero or not, regardless of its size) and ridge regression (which
uses the squared norm of the coefficient). 4

LASSO still has some limitations. In terms of the subset of parameters selected, it is
not very parsimonious. In many situations it includes more predictors than are necessary.
For someone interested only in predictive performance, this is not important; but someone
who is also interested in a small and concise model may find that LASSO emphasizes
shrinking a little too much and selecting not enough. Furthermore, all coefficients are
shrunken, even if they are far from zero and there was no question of whether they should

4SAS has an experimental procedure to implement the LASSO, known as GLMSELECT; see
http://support.sas.com/rnd/app/da/glmselect.html.
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be deleted. It might make more sense to limit bias by only shrinking coefficients which
are relatively close to zero and letting the most important coefficients stay relatively
unchanged, if this could be done without sacrificing continuity. This observation led
Fan (1997), Antoniadis and Fan (2001), and Fan and Li (2001) to propose the Smoothly
Clipped Absolute Deviation (SCAD) penalty, a variation of the LASSO penalty with more
nuanced shrinkage properties.

The shrinkage imposed by a continuous penalty function such as LASSO or ridge
depends on its derivative rather than its raw value(see Fan and Li, 2001). Notice that the
LASSO function’s derivative, for nonzero βj, is simply λ, indicating that all coefficients
are penalized equally. The SCAD penalty is

P(βj) =


λ|β| if 0 ≤ |β| < λ
(a2−1)λ2−(|β|−aλ)2

2(a−1) if λ ≤ |β| < aλ
(a+1)λ2

2
if |β| ≥ aλ

(3)

and for nonzero βj it has the following derivative:

Ṗ(βj) =


λsgn(βj) if |βj| < λ
(a− 1)−1 (aλ− |βj|))sgn(βj) if λ < |βj| < aλ
0 if |βj| > aλ

(4)

The SCAD penalty is compared with the ridge and LASSO penalties in Figure 1. It
is also compared with a penalty which is zero for zero coefficients and a positive constant
for nonzero coefficients; AIC, BIC, etc., can be expressed in terms of such a penalty since
they measure model size in terms of a count of nonzero coefficients.

Like the LASSO (Tibshirani, 1996; Efron et al., 2004) and ridge penalties, and unlike
the discrete count penalty used by best-subset or stepwise approaches, the SCAD penalty
remains continuous, so some shrinkage will be applied and hopefully there will be some
added stability. This is somewhat in the spirit of empirical Bayes (although it is not
the same, as it is based on geometric and frequentist heuristics rather than Bayesian
ones). However, unlike the LASSO and ridge penalties, the SCAD penalty is bounded as
a function of βj (its derivative is zero for large βj), meaning that it imposes proportionally
less bias on large coefficients. SCAD is similar in some ways to the new Adaptive LASSO
of (Zou, 2006).

A.2 Properties of the SCAD Estimator

In introducing SCAD for variable selection, Fan and Li (2001) gave two theoretical justifi-
cations for a SCAD-penalized estimator. The first is based on comparing SCAD to other
methods in a simple case, and the second is based on asymptotics.

To explore the simple case, suppose that each predictor is totally uncorrelated with all
other predictors. In this case, each variable is effectively evaluated on its own to determine
whether it is significant enough to include in the final model. Significance testing, stepwise
testing, and information criteria are all equivalent to a “hard thresholding” rule which
includes the variable if the absolute value of its initial coefficient estimate is greater than
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Figure 1: Relative Shapes of Penalty Functions
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some constant (which depends on the α level of the test or the size of the penalty) and
excludes it otherwise (sets its coefficient to zero). Ridge becomes equivalent to a shrinkage
rule that multiplies each coefficient estimate by a constant less than one (something like
Stein shrinkage); note that this never sets an estimate to zero except in the unlikely case
that it was zero already. LASSO and SCAD become rules that combine shrinkage and
selection. These rules are shown in Figure 2. Fan and Li (2001) argued that in many cases
the SCAD rule was the most desirable of the four for variable selection, since the ridge rule
never sets insignificant coefficients to zero, the hard thresholding rule is discontinuous,
and the ridge and LASSO rule introduce substantial bias for significant coefficients. This
can be seen by comparing the curves in Figure 2 to the dotted diagonal lines representing
unpenalized estimates. Departure from the diagonal line represents bias (which is not
always bad, but should be minimized, all else being equal).

In the more usual correlated-predictors case it is harder to graphically compare the
different penalty approaches in a general way, because the importance of particular predic-
tors cannot be considered without knowing what other predictors are present. However,
the heuristics from the simple case still provide some insight.

Another way to describe SCAD is in terms of its asymptotic behavior as n → ∞, as
described in Li (2001), Fan and Li (2001), Fan and Peng (2004), Zhao and Kulasekera
(2005), and Zou and Li (2007). Suppose that the full model (1) is adequate and correct
but that some of the coefficients in it are zero. Suppose that the number of coefficients
and their true values are fixed, and let n → ∞. If λ is chosen in such a way that λ → 0
but
√
nλ→∞, then the SCAD estimator is consistent for the true subset (i.e., correctly

identifies which coefficients are zero and which are nonzero, with probability approaching
one), just like BIC subset selection. The bias introduced by shrinkage approaches zero
since λ → 0. Thus, in a sense the asymptotic variance is the same as if the true subset
had been known in advance, a finding known as the “superefficiency” or “oracle” property
(Fan and Li, 2001).

The oracle property is an advantage of the SCAD, although not an exclusive one for
SCAD alone. The LASSO cannot attain this property in general, except under special
conditions. Best-subset with BIC has this property trivially, but can be computationally
difficult or impossible if the number of predictors is large. Stepwise selection with BIC
may have this property under appropriate assumptions, but stepwise procedures are rather
ad hoc and often criticized for several reasons. The new adaptive lasso of Zou (2006) has
the oracle property and has seems to have quite favorable convergence properties; see also
Zou and Li (2007).

Also, the idea of selection consistency or the oracle property has itself been controver-
sial. Of course, it does not really guarantee that the selected model for a given dataset
will be the optimal performer in any sense. Because it is based the idea of on selecting the
correct subset with probability approaching one as n→∞, it may not tell us much about
finite-n situations where we do not know if we have found the correct subset or not. In
fact, for modest n consistent estimators often select too few predictors for optimal future
predictive performance (see, e.g., Yang, 2005). Therefore, in our package we allow λ to be
selected either using BIC (which corresponds to λ→ 0 and

√
nλ→∞ so that the oracle

property holds asymptotically) or GCV (which selects a smaller λ so that we do not get
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Figure 2: Penalized Estimators as Functions of the Least-Squares Estimate in the
Orthogonal-Predictors Case
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Note. For each penalty, the x-axis represents the least-squares estimate, and the y-
axis represents the final penalized estimate. The curves show the different shrinkage or
thresholding rules relating the initial to the final estimate. The dotted diagonal line, shown
for comparison, represents a rule in which the final estimate was the initial estimate, i.e.,
ordinary least-squares with no shrinkage or selection.
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the asymptotic oracle property but do have a smaller risk of underfitting), depending on
the user’s preference.

A.3 Details on the Procedure

There are two main computational issues in obtaining a SCAD estimate: how to find a
SCAD estimate given a value of λ, and how to choose a value of λ. Secondary issues
include how to find standard errors and how to deal with variables on different scales
of measurement. PROC SCADLS can handle all of these issues automatically, but we
include this section in order to describe how this is done.

A.3.1 Estimating the Coefficients

The SCAD criterion in the context of linear models is defined as

RSS +
d∑
j=1

nPλj(βj) (5)

where P(βj) equals (3) and λj is the tuning parameter applied to βj.
The usual way to minimize a loss criterion such as (5) is to solve an equation setting its

first derivative to zero. This works for convex loss criteria such as quadratically penalized
least squares (ridge regression). For instance, in ridge regression the criterion to be
minimized is RSS + λ

∑d
j=1 β

2
j , or in matrix terms, (y−Xβ)T (y−Xβ) + λXTx. This is

a convex function of β whose minimum is found by solving −XT (y−Xβ) + λβ = 0, i.e.,
β = (XTX + λI)−1β = XTy. (If λ = 0 this is ordinary least squares.)

Minimizing more complicated penalized least squares functions becomes more diffi-
cult because they are not necessarily convex and are not everywhere differentiable. For
example, with LASSO or SCAD, we would like to solve the equation

−2XT (y −Xβ) +
d∑
j=1

Ṗλj(βj) = 0,

but we cannot do so explicitly, or even using a Newton-Raphson algorithm directly, mainly
because Ṗλj(βj) is undefined at zero. Therefore, some modified algorithm is needed.

The algorithm proposed by Fan and Li (2001) for minimizing the SCAD function relied
on iterative local quadratic approximations to the SCAD function; we simply call this the
LQA algorithm. The idea of this modification upon the Newton-Raphson algorithm is
as follows: Perform the estimation in steps, with the initial step being the unpenalized
(ordinary least-squares) estimate. On a given step, coefficients which are very close to zero
(less than a threshold, say 10−4) should be set to zero. For other coefficients, their new
values are estimated by approximating the SCAD penalty function for each coefficient by
a quadratic function with similar curvature at that coefficient, resulting in a local ridge
regression. This approach works rather well; it is described in detail in Fan and Li (2001)
and its convergence properties are studied in Hunter and Li (2005).
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A newer approach is usually quicker and requires fewer iterations, the Iterative Com-
ponentwise Minimization algorithm, is described in Zhang (2006). It works by repeatedly
minimizing the SCAD criterion one component at a time, leaving the estimates for the
other components fixed, until all estimates converge. It works on the same idea as the
coordinate-wise descent algorithm proposed by Friedman et al. (2007) for LASSO. The
adjustment to each component is based on a fixed-point characterization derived in Li
(2001). The ICM and LQA algorithms give essentially the same answers. LQA is better
understood but ICM is very much faster for large datasets because it does not involve
repeated matrix inversions.

A.3.2 Selecting λ

SCAD, like other penalized estimation approaches, depends on a “tuning parameter” λ.
When λ = 0, there is no penalty and we are simply fitting ordinary least squares to the
full model. If λ is too large then the penalty becomes so strong that all variables are
deleted and the model becomes trivial (i.e., y = β0 + ε). Somewhere in between, SCAD
behaves more desirably. However, since λ is rather abstract, we may not be sure how to
choose it.

There are several possible approaches. One approach is to use the fact that, for both
LASSO and SCAD, λ is the threshold for model inclusion for the standardized regression
coefficient, assuming that all predictors are mutually orthogonal (independent); see Figure
2. As an example, suppose λ = .1 and a = 3.7. The coefficient is set to zero if the initial
standardized estimate is less than .1, is shrunken somewhat to maintain continuity if the
initial standardized estimate is between .1 and .37, and is left unchanged if the initial
standardized estimate is higher than .37. So one might want to set λ to the smallest
coefficient value that one would consider practically different from zero. However, this is
still rather abstract, and besides, this thresholding characterization does not hold exactly
if there is nonzero correlation between the predictor variables, which is almost always the
case. Another approach is to try to use asymptotic results. Fan and Li (2001) found that
βj estimates from SCAD are

√
n-consistent as long as λ → 0, and have the asymptotic

oracle property if λ→ 0 and
√
nλ→∞. So we might want a λ on the order of

√
log(n)/n

or
√√

n/n. This still is not helpful enough, though, because “on the order of” is a very

vague term: we don’t know whether to use 1
5

√
log(n)/n, 5

√
log(n)/n, etc.

Therefore, a better way to select the tuning parameter is to adapt one of the classical
criteria such as GCV or BIC to compare the various candidate SCAD models fitted at each
of a list or “grid” of candidate λ values. For instance, we could try λ = .01, .02, .03, ..., .99,
do a SCAD regression for each of these, and choose the resulting model which gives us
the best BIC value. The BIC for linear model selection is

BIC = −2`(xm,y) + log(n)dm = n log(RSSm/n) + log(n)dm

where xm are the predictors in the candidate model, RSSm is the RSS for the candidate
model, and dm is the size of the candidate model. The use of this criterion as a tuning
parameter selector for SCAD was suggested by Wang et al. (2007). A different λ selector
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had been originally suggested by Fan and Li (2001), namely a version of the Generalized
Cross-Validation (GCV) penalty:

GCV =
RSSm

n(1− dm/n)2
.

This is not a very strict penalty. It represents about the same level of shrinkage as AIC,
Cp, or leave-one-out cross-validation (see Shao, 1997; Hastie et al., 2001). The tradeoff
between SCAD/GCV and SCAD/BIC is very similar to the classic tradeoff between AIC
and BIC (see Shao, 1997; Kuha, 2004; Yang, 2005). The former is less likely to delete an
actually important variable, and the latter is less likely to include unimportant variables.
Neither is universally better than the other, so a user may choose between them based on
the goals of a particular data analysis.

The model degrees of freedom, dm, can also be conceptualized in more than one way.
The easiest way is to treat it as a count of how many predictor coefficients are in the model
(i.e., are not set to zero). (It does not matter whether we include the intercept in this
count or not, since conventionally all models in question will include an intercept unless
there is a good reason not to do so.) Such a count does not take shrinkage into account;
e.g., it doesn’t count a 20% shrunken coefficient as being only .8 of a coefficient. There are
various alternative measures of dm which do measure the effects of shrinkage in addition
to selection, in an attempt to avoid choosing an overly constrained model. Fan and Li
(2001) suggested a definition based on one widely used in linear smoothing (as in ridge
regression and spline fitting), specifically d̂m ≡ tr(P) where P = X(XTX +nP(β̂))−1XT .
Intuitively, this takes into account how much less variable ŷ is in the reduced model as
opposed to the full model. By default, PROC SCADLS uses the simple count (DF COUNT)
to increase computational speed, but the alternative version is also available (DF PROJ).

There are other possibilities for choosing tuning parameters, including five- or ten-fold
cross-validation (see Fan and Li, 2001) or perhaps temporarily augmenting the model with
random data and finding the smallest λ required to delete the bogus data (see Luo et al.,
2006). These are not currently supported in PROC SCADLS but could be implemented
as macros.

A.3.3 Finding Standard Errors

Fan and Li (2001, p. 1354) showed that an asymptotic covariance estimate for the included
coefficients βm of the SCAD-penalized β is:

ˆCov(βm) =
(
XTX + nD(β)

)−1
C
(
XTX + nD(β)

)−1
(6)

where C = ˆCov(XT (y −Xβ)). D is a diagonal matrix whose elements are Ṗ(|βj|)/|βj|),
reflecting the relative shrinkage imposed by the penalty. Once we have ˆCov(βm) we
calculate standard errors in the usual way by taking the square roots of the diagonal
elements. In the current version of PROC SCADLS, we use the model-based estimate
of C under homoskedasticity: σ̂−2(XT

mXm), where σ̂2 is the variance estimate from the
reduced model. (C−1 would be the covariance matrix of β if there were no shrinkage.)
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These standard error estimates have some limitations: they are asymptotic rather than
exact, and they assume that the correct model is chosen with probability approaching
one. That is, they effectively condition upon the true model having been chosen, just
like standard errors calculated after using a classical variable selection method. Also, like
standard errors calculated after ridge regression, they take into account the reduction in
sampling variance due to the penalty but do not take into account the increase in bias.
Thus, the standard errors are likely to be somewhat too small, especially for higher values
of λ. This may not be a huge problem, since the data-driven λ selection methods used
here should prevent λ from becoming unreasonably large. However, it may be of interest
in the future to explore an alternative technique such as bootstrapping to try to include a
more realistic assessment of uncertainty in standard error estimates (although this is not
a simple problem; see Nguefack, 2005).

A.3.4 Standardizing the Dataset

The size of the SCAD penalty on a model depends on the βj estimate for its coefficients,
and yet the βj estimates partially depend on issues other than the practical significance of
the predictor (in terms of variance accounted for). For example, they also depend on the
scales on which the predictor variables are measured, and the scale on which the response
variables are measured. That is, if y = .003x+ ε where x is measured in kilometers, then
y ≈ 3000x if x is re-measured in millimeters. This may lead us to be concerned about
whether a penalty of a given size will act arbitrarily. We certainly do not want a selection
procedure to consider βx insignificant in the first case but significant in the second, since
in fact it has the same substantive meaning in both cases. The same problem presents
itself for ridge and LASSO estimation as well. The usual solution, and the one which
we follow here, is to temporarily standardize all of the predictors so that they are all on
comparable scales of measurement. The penalized estimation procedure is then applied,
and then the final estimates are back-transformed to the original scale of measurement.

Specifically, all of the predictor variables, as well as the response variable, are standard-
ized to have a mean of zero and a variance of one, by subtracting their original means and
dividing by their original standard deviations, e.g.: y∗ = (y − ȳ)/sy where ȳ is the mean

of y and sy =
√

(
∑

i(yi − ȳ)2)/n. Then we find the standardized coefficient estimates β̂∗.
To return them to their original scale of measurement for the final output, we multiply
each coefficient βj, as well as its standard error, by sy/sxj . The standardized model has

zero intercept, so to get the new intercept estimate we must calculate ȳ−
∑

j(σy/σxj)β̂jxj.

The intercept standard error under the final model is calculated as n−1σeσy

√
tT Ĉov(β̂)t

where σe is the error standard deviation in the standardized model and tj = syx̄j/sxj .
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B Appendix: Examples

In this section we work through some examples that show how PROC SCADLS works in
various situations, and compare some different approaches.

B.1 Small Simulated Dataset

As a simple first example of using SCAD, we analyze an artificial dataset very similar
to those used in some of the Monte Carlo studies in Tibshirani (1996) and Fan and
Li (2001). There are 100 cases (i.e. “subjects”), each with a single response variable
and eight predictor variables. The predictor variables, x1 through x8, were all generated
as independent standard normals. The responses y had previously been generated as
5 + 3x1 + 2x2 + 1.5x5 + 3ε where the ε’s were independent standard normal. First let us
read in the data.

DATA TEST1;

INPUT y x1 x2 x3 x4 x5 x6 x7 x8;

DATALINES;

0.7135 -1.0626 0.7590 -0.6732 0.8885 -0.9389 -0.3818 0.1127 1.0560

1.6676 -1.5116 1.4317 0.7694 -0.1712 -0.0970 -1.4981 -0.4805 1.1329

1.0240 -0.9424 0.4283 -1.3002 0.6369 -1.2380 0.1444 1.4361 0.2710

12.1233 0.8519 1.7792 0.0462 -0.0378 0.1808 0.4751 -0.3108 1.3437

7.7042 0.6245 -0.8777 -0.6578 -0.0283 0.4522 -0.6585 -0.1024 -0.2741

10.4535 1.2777 0.1095 -0.4458 -0.3755 -0.1439 -0.6030 -0.0410 -1.2973

2.9341 0.1941 -1.0241 -0.5028 -0.6683 -0.5703 -0.3055 0.2303 -0.3262

4.8074 -0.5370 -0.0474 0.6498 0.2650 0.7410 -1.9529 0.4793 0.2360

9.9254 1.1901 1.1130 -1.5731 0.5149 0.8707 0.0406 0.1151 0.2023

2.4488 -0.8418 -0.5804 1.1765 0.3028 0.3532 1.1155 0.4236 -0.8443

7.2965 0.3089 0.3888 0.7393 -1.3369 0.8352 -0.1143 0.6764 -1.7243

9.5397 0.8709 -0.6241 0.7710 0.7063 1.2302 0.1131 0.9813 -0.5454

2.8196 0.6158 -2.9541 0.8880 1.1943 1.2662 0.8657 0.8557 -0.4251

-1.0005 -0.1167 -0.3240 2.0873 0.6128 -0.9921 0.3428 -0.8410 1.4691

7.9809 0.2214 -1.7367 -3.1569 -1.4121 0.5983 -0.9148 0.1365 0.4053

9.7050 0.4596 2.4290 -0.0668 0.7210 -0.8176 1.7697 -0.5697 0.2593

3.5988 0.7408 -0.0755 1.8771 0.1477 -1.5362 -1.7069 -1.3522 0.5833

3.8925 -0.4747 -0.2618 -0.2418 -2.7012 0.1760 0.2338 0.4839 0.5546

7.5628 -0.4249 1.4401 -0.3175 0.7627 0.4810 1.1566 2.0936 -0.7501

4.4317 -1.3722 0.5012 1.0261 0.9193 1.1756 0.5730 -0.8774 0.1826

8.7069 1.1339 -0.6055 0.6635 -1.0072 0.7144 -0.1383 0.2092 0.3003

8.8763 0.7029 0.0547 1.3407 -1.9140 0.0401 -0.5720 -0.1978 0.3196

8.4676 -0.8994 2.4867 0.5015 -1.6870 -0.6123 0.2437 -0.7146 -0.3448

3.9714 -1.4022 0.6884 1.1130 -1.6294 0.9710 0.6218 -2.2792 0.7932

3.6611 -0.2143 -0.8850 -0.5643 1.2007 -0.4501 -1.4589 1.7898 0.9685

10.6914 0.8751 0.6378 0.2530 0.6907 1.3081 -0.6095 0.5391 -0.4177

7.3058 0.0496 0.9085 -0.2919 0.4941 -0.4262 0.7294 -2.0759 0.2131

2.1085 -0.4869 -0.8088 1.2236 1.4163 -0.9907 -1.3140 1.5296 0.5896

7.2639 0.3131 -0.4922 -0.4604 -0.6687 0.8315 -0.3339 0.3616 -0.1142

-0.7601 -0.8550 0.4753 1.0664 -2.2903 -1.0365 -0.5631 2.2976 0.4530

6.1289 0.2710 0.4798 0.5140 -1.3196 0.6678 1.7402 -0.0935 0.4349

7.1117 0.2236 -0.7204 -0.0761 -0.2875 0.2879 -0.3132 0.5311 -0.5560

5.9097 -0.3758 0.0119 -0.1419 0.4097 0.1097 1.4533 0.6773 -0.4948

0.8069 -1.2365 -0.7831 1.7836 0.0918 -0.9617 -1.4398 -0.1227 0.0991

10.1951 0.8695 1.9774 -1.9033 0.3189 -1.0485 -0.2177 1.2549 0.2896

10.3685 -0.1183 -0.2279 0.9195 -0.6634 0.8604 -1.0162 -0.4512 -0.6612

-0.0566 -2.6392 0.6756 -0.2228 -0.1525 -0.5456 -1.0072 -1.3255 0.3410

6.4738 0.1283 -0.8861 0.4017 0.0245 0.0279 1.1144 1.1298 -0.2375

5.1363 0.2388 0.7520 0.6968 -2.1382 -1.6991 -1.4319 0.4215 1.9272

5.1573 1.1401 -1.0024 0.3093 -0.5689 -0.5421 0.0841 -0.4780 -0.0308

12.5305 1.3650 0.2778 0.0569 -1.2677 0.6055 -0.2264 -0.4799 -0.4118

-1.0739 -2.1471 0.5810 0.2213 -3.3217 1.0252 -0.6118 0.5540 0.7138
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2.8193 0.4891 -2.0960 0.4425 -1.9448 2.0732 0.6397 -1.1022 -0.6301

4.7387 -1.5336 -0.8889 0.9711 -0.3332 1.0037 -0.9170 0.2304 -1.2971

2.8625 -0.3828 0.8936 -1.3562 1.0763 -0.1819 0.4188 1.2675 -2.3801

4.4254 -0.3550 0.7997 -0.4148 1.3026 -1.0663 0.5679 0.1202 -1.8199

7.5020 -0.1921 1.9600 0.9926 0.5288 0.6359 -0.0593 0.3116 1.4544

11.7215 1.1067 0.7285 1.1325 2.1342 0.6199 0.6311 -1.2867 -1.2349

5.0991 1.1369 -0.2187 0.1450 -0.6110 -1.7179 -0.1743 1.4626 0.5266

3.1756 0.1448 -1.0334 -0.8347 -0.8007 -0.9029 -0.5233 0.0343 -0.5376

13.7059 1.1154 0.6908 1.1032 1.1591 0.1371 1.3522 -2.4365 0.1734

7.8078 0.6885 -0.7856 0.3856 0.8703 -0.4437 0.6484 -0.0693 -1.7423

6.4489 -0.8585 0.2085 -0.7029 -0.0306 1.5785 0.6973 -0.2920 -0.0700

2.8715 -0.6887 -0.8535 -0.5350 1.3426 0.1206 1.0839 0.9932 0.7569

6.4145 -0.0735 1.0111 0.8358 -1.2104 0.1119 -1.5481 0.8058 0.5862

1.7523 -0.1634 -1.3239 -0.3268 -0.2394 -1.1695 -0.8643 0.1083 -0.3643

4.2625 0.1827 -1.2443 0.0007 -1.6112 1.2631 -0.3010 -0.2698 -0.2530

6.4286 1.1445 -0.3804 -0.4990 0.6786 -0.6171 0.2420 0.9520 -0.2500

11.1319 1.5436 1.0161 -0.1367 -0.1249 -0.9149 0.5802 1.0592 -0.1255

1.0387 -1.1467 -0.3337 0.1028 1.1466 0.1200 1.2535 -0.5845 -0.0719

1.5294 -0.3757 0.9953 -0.5973 -0.7756 -1.9783 -0.2890 1.4886 0.2820

7.3268 -0.4339 0.3431 0.6552 0.8101 1.6342 -1.2046 0.5420 -0.8501

12.4619 2.5107 0.4966 0.5703 -0.6149 0.3539 -1.0171 -0.6225 1.1046

3.8198 -0.4600 0.1198 -0.4464 -1.6331 -0.2764 0.9132 0.4207 -0.4041

12.5353 1.1069 0.3674 -0.2788 -0.3438 1.7512 0.8047 -1.2377 0.6840

6.8439 -0.1330 0.0404 2.0114 0.1527 1.4407 -0.1090 0.1291 1.2037

7.8090 -0.8821 2.8766 -0.0223 1.4393 -1.2069 0.6867 -0.0225 0.6936

11.3768 0.0392 1.4040 -1.4690 1.2704 0.8572 -0.6010 -0.2751 -0.6815

5.9002 0.7692 -0.9911 -0.5900 0.2298 0.1806 1.5989 -1.0862 -0.3780

8.2382 -0.0078 1.2598 0.8951 0.3275 0.4673 0.6951 0.3369 -0.9805

-0.7959 -0.9858 -1.3149 0.2003 -0.8155 -0.2580 -0.6294 -0.1811 1.1912

2.7515 -0.6723 -0.0382 -0.2616 0.3719 1.2595 0.0359 1.2041 0.6825

13.8757 2.4139 0.1373 -0.0427 0.5078 0.9273 0.3351 1.3260 1.9798

8.8781 0.7097 1.1434 -0.4395 0.5210 -0.1541 0.2855 0.3089 -0.2960

8.4822 1.4314 -0.3777 -0.7005 -1.4219 0.6227 -0.7372 0.3194 -1.9467

9.0336 0.5849 0.6207 0.6262 -1.2908 0.2297 -1.0295 0.7398 0.9746

6.5039 -1.6202 1.5300 -0.4649 0.8719 0.5842 -2.4178 1.7615 -0.8973

4.1844 0.3487 -0.1930 -3.0113 0.6898 -0.4205 0.3583 0.3950 0.2434

1.8553 -0.0862 -0.2167 -0.7737 -0.4821 0.2703 -0.3782 0.9268 -1.7011

7.9075 -0.3837 0.9580 -0.2708 0.0888 1.4762 -0.5513 -1.2724 -0.7375

1.4299 -1.0881 2.0633 0.2725 -0.2703 -0.7278 -1.2500 1.2916 -0.0867

-0.1599 -1.9856 0.7816 -1.9161 -1.2548 -0.4580 0.3558 -0.0284 -0.4686

3.7192 0.6263 0.8962 2.3718 1.0978 -2.5220 -1.0866 -0.6175 -0.5285

1.6896 -0.1886 -0.1465 0.4465 0.7010 -0.2165 -0.1150 -2.0940 0.2174

8.3053 -0.4976 2.3882 0.6872 -2.0725 -0.6883 -0.3028 0.8049 -0.1015

-3.9688 -2.6344 0.9589 -0.0316 0.3501 -0.3845 -0.1773 0.1515 1.2669

4.6400 -0.9804 0.3121 0.2433 1.9599 1.1448 -0.9926 0.4062 1.3361

-0.5186 -0.5659 0.0639 -0.0368 0.0569 -1.0248 -0.4063 0.0586 2.5596

8.1078 -0.3749 0.2981 -0.7809 1.3539 -0.1540 1.1428 -0.1208 -0.6416

5.9799 0.7379 -0.7322 0.3472 -1.9320 0.8693 0.4803 0.1669 1.5743

5.1503 0.7609 0.2499 -1.9909 -0.5814 1.5311 0.2913 0.3227 0.6269

10.7930 0.3388 1.9315 -1.5486 2.0023 0.6405 -1.8998 1.1840 1.6101

4.4160 0.6029 -1.1616 1.1985 -0.9718 -0.8225 0.8565 -0.3973 0.8252

2.9410 0.0121 -0.1496 -0.3402 1.1943 0.3447 -0.9382 -0.1168 -0.7922

1.1663 -0.7261 -0.8211 -1.1442 0.0781 0.0445 0.6717 -0.6126 -0.0064

5.8549 0.2827 1.8150 0.2671 -0.6633 -0.8039 0.4805 2.7130 -2.2495

3.2077 -0.2873 -1.1953 -0.0677 -1.7522 1.5334 1.7652 -1.0877 1.3030

6.6556 1.0907 0.5702 -0.3114 -0.9025 0.3821 1.6328 -1.0260 -1.2070

-2.4938 -1.8878 -1.0900 0.0833 1.0245 0.4143 -1.2575 -1.6563 0.9900

0.5449 -0.2085 -0.5811 -0.9247 1.1550 -0.4493 0.4330 0.5511 0.0157

;

RUN;

Now let us run the SCAD algorithm to fit a parsimonious model to this dataset.

PROC SCADLS DATA=test1 ;

MODEL y = x1 x2 x3 x4 x5 x6 x7 x8;
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SELECTION BIC;

ALGORITHM ICM;

RUN;

PROC SCADLS returns the following output.

Number of observations: 100

Number of predictors: 8

Tuning parameter details:

Minimum candidate lambda: 0.0093

Maximum candidate lambda: 1.9953

Selected lambda: 0.2884

Simple df: 4

BIC: 419.2536

Converged in 10 iterations.

Final Estimates:

Variable Beta Std. Errs.

-----------------------------------

Intercept : 5.166721 0.192210

x1 : 2.916775 0.194056

x2 : 1.727906 0.182481

x5 : 1.502878 0.208640

Suppose we change SELECTION BIC to SELECTION GCV. In this case the subset selected
remains the same (in this case!). Also, if we change ALGORITHM ICM to ALGORITHM LQA,
many more iterations are required, but the computations still take only a second or less,
and we get the same answer.

B.2 Small Dataset Continued: Comparing SCAD with Other
Methods

For comparison, let us fit the full model using the ordinary regression procedure which is
a built-in part of SAS/STAT R©.

PROC REG DATA=test1;

MODEL y = x1 x2 x3 x4 x5 x6 x7 x8;

RUN;
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Part of the resulting output is this table of coefficient estimates.

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 5.21931 0.19485 26.79 <.0001

x1 1 2.92668 0.19675 14.88 <.0001

x2 1 1.72692 0.18341 9.42 <.0001

x3 1 0.02287 0.19900 0.11 0.9087

x4 1 0.18813 0.16970 1.11 0.2705

x5 1 1.48036 0.21212 6.98 <.0001

x6 1 -0.21366 0.21595 -0.99 0.3251

x7 1 -0.23276 0.20647 -1.13 0.2626

x8 1 -0.34015 0.20322 -1.67 0.0976

Also for comparison, let us also run the ordinary regression on the three-predictor model
which SCAD chose (and which happens to be the correct data-generating model for the
simulation).

PROC REG DATA=test1;

MODEL y = x1 x2 x5 ;

RUN;

We now see the estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 5.16672 0.19221 26.88 <.0001

x1 1 2.91677 0.19406 15.03 <.0001

x2 1 1.72791 0.18248 9.47 <.0001

x5 1 1.50288 0.20864 7.20 <.0001

In this simple situation the SCAD-penalized estimate was not very different from the
estimate obtained by fitting the three statistically significant predictors from marginal
hypothesis testing after an ordinary regression.

One might also experiment with a best-subset approach:

PROC REG DATA=test1;

MODEL y = x1 x2 x3 x4 x5 x6 x7 x8

/ SELECTION = RSQUARE AIC BIC BEST=5;

RUN;

In this case we get the following output:

Number in

Model R-Square AIC BIC Variables in Model
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1 0.4960 206.2594 205.5319 x1

1 0.1001 264.2264 262.1647 x2

1 0.0945 264.8391 262.7664 x5

1 0.0222 272.5284 270.3221 x8

1 0.0144 273.3149 271.0954 x6

-----------------------------------------

2 0.6532 170.8599 170.6792 x1 x2

2 0.5647 193.6077 192.3895 x1 x5

2 0.5034 206.7635 205.0178 x1 x4

2 0.5032 206.8161 205.0684 x1 x8

2 0.4983 207.7863 206.0018 x1 x7

-----------------------------------------

3 0.7749 129.6504 131.9335 x1 x2 x5

3 0.6617 170.3891 169.7090 x1 x2 x8

3 0.6615 170.4531 169.7689 x1 x2 x7

3 0.6552 172.2842 171.4842 x1 x2 x4

3 0.6533 172.8335 171.9990 x1 x2 x6

-----------------------------------------

4 0.7803 129.2219 131.8261 x1 x2 x5 x8

4 0.7784 130.0921 132.6065 x1 x2 x4 x5

4 0.7765 130.9286 133.3570 x1 x2 x5 x7

4 0.7756 131.3334 133.7204 x1 x2 x5 x6

4 0.7750 131.6159 133.9740 x1 x2 x3 x5

-----------------------------------------

5 0.7831 129.9260 132.8149 x1 x2 x4 x5 x8

5 0.7827 130.1177 132.9826 x1 x2 x5 x7 x8

5 0.7816 130.6154 133.4178 x1 x2 x5 x6 x8

5 0.7806 131.0939 133.8365 x1 x2 x3 x5 x8

5 0.7799 131.3835 134.0899 x1 x2 x4 x5 x7

-----------------------------------------

6 0.7854 130.8578 134.0547 x1 x2 x4 x5 x7 x8

6 0.7850 131.0711 134.2363 x1 x2 x5 x6 x7 x8

6 0.7846 131.2618 134.3988 x1 x2 x4 x5 x6 x8

6 0.7835 131.7319 134.7995 x1 x2 x3 x4 x5 x8

6 0.7828 132.0928 135.1072 x1 x2 x3 x5 x7 x8

-----------------------------------------

7 0.7878 131.7428 135.3032 x1 x2 x4 x5 x6 x7 x8

7 0.7856 132.7983 136.1784 x1 x2 x3 x4 x5 x7 x8

7 0.7850 133.0698 136.4038 x1 x2 x3 x5 x6 x7 x8

7 0.7849 133.1152 136.4414 x1 x2 x3 x4 x5 x6 x8

7 0.7813 134.7606 137.8092 x1 x2 x3 x4 x5 x6 x7

-----------------------------------------

8 0.7878 133.7283 137.4890 x1 x2 x3 x4 x5 x6 x7 x8

In this case the best-AIC and best-BIC models actually overfit (they include x1, x2, x5,
but also x8). (This is not a general rule; there will be many cases where SCAD overfits
and best-subset does not, and other cases in which one or more methods underfit.)
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This example does show one advantage of best-subset over other methods (including
significance testing, stepwise procedures as well as LASSO and SCAD). Namely, in best-
subsets output like the above we can easily see some of the different subsets available for
a given size and judge whether or not they differ greatly in AIC or BIC values. If they do
not, we know that our chosen model should not be interpreted too confidently, as though
it was the only one available; in other words, we get to see whether there are multiple
good models which predict the observed data almost as well as the putative best model,
and we may wish to choose one or more of them subjectively based on their theoretical
meaning. (Of course this is less computationally feasible in situations with hundreds of
predictors; in this case we are stuck with either stepwise or some kind of penalized least
squares method like SCAD, LASSO, ridge regression, etc.) Other methods, including
LASSO and SCAD including stepwise methods, only provide one subset of any given size,
which is more convenient but less informative. How important this limitation is, depends
on the goals of the individual investigator. One might try SCAD along with various other
methods and compare the results.

B.3 Larger Simulated Dataset

To explore how SCAD works with datasets of nontrivial size, we simulate a problem where
there are 200 predictor variables and 1000 observations. The data-generating model still
has the form of (1). However, now β0 = 100, σ = 5, and the other β’s are [0,1,0,-1,0,1,0,-
1,0,...,-1]. The x’s are all binary (zero-one) variables, independent among subjects but
correlated within subjects such that Corr(xij, xik) ≈ .5. The errors are independent
N(0, σ2). In this challenging problem, there are 2200 (about a million billion billion billion
billion billion billion) possible submodels and only 1000 data points to evaluate them with,
so finding the exact true subset is not a realistic goal. However, we want a procedure which
will minimize the number of wrong inclusions (here, odd-numbered predictors included in
the model) and wrong deletions (here, even-numbered predictors deleted from the model),
i.e., to have good sensitivity and specificity. Because the individual effects are small in
ratio to error, and the standard errors are large, it is difficult to detect them all. However,
because there are 100 inactive predictors, all of them correlated with active predictors, it
is difficult to exclude them all. Thus a model selection method of some kind is needed.
200 predictors may make the dataset too big for an exhaustive best-subsets search to be
feasible. SCAD was designed as an alternative method for attempting to handle large
datasets like this.

proc scadls data=big;

model y = var1-var200 ;

selection BIC;

df COUNT;

algorithm ICM;

run;

For SCAD with BIC, the default MAXITER was not enough; it had to be increased,
and finally the procedure took 1303 iterations (a few minutes) to run. SCAD with BIC

35



falsely excluded 33 of the active predictors (7, 18, 22, 26, 42, 54, 56, 64, 68, 70, 86, 90, 92,
94, 96, 112, 114, 116, 130, 134, 138, 140, 142, 146, 152, 156, 168, 172, 176, 180, 188, 190,
194) and correctly included the other 67. It falsely included 10 of the inactive predictors
(15, 69, 81, 83, 89, 111, 127, 139, 143, 167) and correctly excluded the other 90. Of the
correct inclusions, all beta estimates had the correct sign.

For SCAD with BIC, 3109 ICM iterations were needed. SCAD with GCV falsely
excluded 25 predictors (numbers 18, 22, 26, 28, 42, 56, 64, 66, 68, 90, 92, 94, 96, 114,
116, 130, 134, 140, 142, 156, 168, 176, 188, 190, 194) but included the other 75. It falsely
included 37 of the inactive predictors (1, 9, 11, 19, 21, 25, 27, 31, 39, 49, 51, 57, 69, 79,
81, 83, 89, 95, 103, 109, 111, 127, 135, 143, 145, 147, 151, 161, 165, 167, 177, 179, 181,
183, 185, 187, 199) but excluded the other 63. Again, of the correct inclusions, all beta
had the correct sign (none were negative).

Which performance was better is obviously a tradeoff that depends on one’s relative
amount of concern about false inclusions (which are something like Type One errors and
make the model more complicated) versus false exclusions (which increase the model bias
by constraining nonzero parameters to zero).

B.4 Pollution Dataset

In this example we analyze the pollution dataset McDonald and Schwing (1973) from
StatLib (http://lib.stat.cmu.edu/datasets/pollution). The goal is to predict city-
specific mortality rates per 100000 people (MORT) for a sample of American cities, from
a number of predictors including precipitation rates (PREC), average winter temperature
(JANT), average summer temperature (JULT), percent aged over 65 (OVR65), aver-
age household size (POPN), median education level (EDUC), percent adequate housing
(HOUS), population per square mile (DENS), percent non-white (NONW), percent white-
collar jobs (WWDRK), percent households with incomes under the poverty line (POOR),
nitric oxide pollution level (NOX), sulfur oxide pollution level (SOX), and average hu-
midity (HUMID). We leave out a hydrocarbon pollution variable, HC, that turned out to
be almost perfectly correlated with NOX; also, we apply (natural) log-transformations to
DENS, NOX, and SOX, which on their original scale are strongly positively skewed. To
run SCAD with the GCV tuner we can use

PROC SCADLS DATA=pollution DETAILS;

MODEL mort = prec jant jult ovr65 popn educ hous

logdens nonw wwdrk poor lognox logsox humid ;

SELECTION GCV;

DF COUNT;

ALGORITHM ICM;

MAXITER 500;

RUN;

The output is shown below:

Number of observations: 60
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Number of predictors: 14

Tuning parameter details:

Minimum candidate lambda: 0.2057

Maximum candidate lambda: 41.6280

Selected lambda: 3.6992

Simple df: 10

GCV: 1121.3422

Converged in 309 iterations.

Final Estimates:

Variable Beta Std. Errs.

-----------------------------------

Intercept : 1933.7641 347.84825

prec : 2.682706 0.758232

jant : -2.592863 0.589249

jult : -3.154923 1.664826

ovr65 : -13.76543 6.727901

popn : -148.8091 57.462948

educ : -20.47393 6.739721

nonw : 4.154444 0.991648

poor : -33.95322 14.475614

lognox : 45.320582 12.696981

For BIC we get

Number of observations: 60

Number of predictors: 14

Tuning parameter details:

Minimum candidate lambda: 0.2057

Maximum candidate lambda: 41.6280

Selected lambda: 5.5291

Simple df: 7

BIC: 608.4714

Converged in 237 iterations.

Final Estimates:

37



Variable Beta Std. Errs.

-----------------------------------

Intercept : 857.55407 43.118742

prec : 2.504568 0.599153

jant : -2.067983 0.494621

educ : -1.713634 2.416767

nonw : 3.748743 0.648163

poor : -22.70902 12.768139

lognox : 41.454661 12.112746

The estimates for the full model, for best-subset selection, and for SCAD selection,
are summarized in the following table.

Full Best AIC Best BIC SCAD, GCV SCAD, BIC
β SE β SE β SE β SE β SE

(Intercept) 1786.90 433.31 1933.76 347.85 812.60 29.43 1933.76 347.85 857.55 43.12
prec 2.58 0.82 2.68 0.76 2.95 0.57 2.68 0.76 2.50 0.60
jant -2.26 0.69 -2.59 0.59 -2.28 0.49 -2.59 0.59 -2.07 0.49
jult -3.38 1.99 -3.15 1.66 -3.15 1.66
ovr65 -13.89 7.26 -13.77 6.73 -13.77 6.73
popn -132.50 63.95 -148.81 57.46 -148.81 57.46
educ -14.60 9.94 -20.47 6.74 -20.47 6.74 -1.71 2.42
hous -1.13 1.27
logdens 16.68 14.99
nonw 3.86 1.11 4.15 0.99 3.76 0.66 4.15 0.99 3.75 0.65
wwdrk -0.19 1.43
poor -34.68 15.36 -33.95 14.48 -33.95 14.48 -22.71 12.77
lognox 42.21 14.81 45.32 12.70 21.67 4.41 45.32 12.70 41.45 12.11
logsox 0.06 0.11
humid 0.21 0.97

We can see that best-AIC and SCAD-GCV worked similarly, and best-BIC and SCAD-
BIC worked similarly. All of the methods agreed on some variables (such as jant and jult
but disagreed on others). One might ask whether these variables “should” be included in a
“true” model or not. In reality (outside of simulations), it is unlikely that any observable
variable has a partial correlation of exactly zero with the outcome, so in a sense even
the full model is nowhere near flexible enough to be “true.” In a more practical sense,
the choice between a smaller and larger model is based on an investigator’s needs and
priorities, and a judgment of which error would be more serious in one’s own particular
situation: including a relatively unimportant variable or excluding a relatively important
one.

Examining the table, one might be worried about the vast disagreements among the
models regarding the intercept term, both in the estimates and the standard errors. How-
ever, these disagreements actually mean little or nothing, because the intercept parameter
(which could be interpreted as the predicted value in the unlikely or impossible case that
all of the included predictors are zero) has a different meaning for each model. This
discrepancy would be less if the predictors had been centered at zero.

Incidentally this dataset also provides a good example of why regression coefficients
in an observational study or survey should not be interpreted as causal effects. For
instance, in all cases, lower January temperatures are associated with lower mortality.
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A näıve analyst would have expected the reverse, because people might die of frostbite
if temperatures are too low. Instead, January temperature may be a marker for region
of the country, which in turn is related to socioeconomic factors. Also, most of the
models include precipitation level but do not include sulfur dioxide level, but we would
not conclude that water is toxic but sulfur dioxide is harmless. Rather, some of the
variables are probably serving as proxies for unobserved characteristics of the geographic
location, and some other variables may be hidden by collinearity with others. In fact, the
correlation coefficient of logsox with mort is higher than that of lognox, but the small and
haphazard sample and a .69 correlation between lognox and logsox make it impossible to
separate their effects.

B.5 Nutrition Dataset with Categorical Predictors

In this section we use the plasma retinol dataset submitted by Therese Stukel on StatLib
(see http://lib.stat.cmu.edu/datasets/Plasma_Retinol). Suppose our goal is to
find a parsimonious model to predict people’s blood plasma levels of the antioxidant mi-
cronutrient beta-carotene, found in carrots and other colored vegetables. The response
is BETAPLASMA, the beta-carotene level in nanograms per millileter. Relevant predic-
tors include AGE in years, SEX (1 for male / 2 for female), SMOKSTAT (1=nonsmoker,
2=former smoker, 3=smoker), QUETELET (a numerical measure of weight status, some-
thing like body mass index; actually the ratio of weight to squared height), VITUSE
(1=frequent vitamin pill user, 2=occasional user, 3=nonuser), CALORIES consumed per
day, FAT grams consumed per day, FIBER consumed per day, ALCOHOL drinks con-
sumed per week, CHOLESTEROL milligrams consumed per day, and BETADIET which
is the amount of beta-carotene consumed from food per day in micrograms. Because a
model for BETAPLASMA which did not include BETADIET would be strange, we will
use the FORCEIN option to make sure that BETADIET will be treated as a covariate of
special importance and will not be penalized or deleted.

This dataset differs from the pollution dataset in that it involves some categorical
predictors. It would be okay to include SEX as a numerical predictor because it has only
two levels. However, SMOKSTAT and VITUSE have three levels each. They are ordinal
rather than nominal, so they could be imagined to represent an underlying quantitative
dimension, but they are not really on a numerical scale. That is, we cannot trust that an
occasional vitamin user is really halfway between a frequent user and a nonuser in any
sense, especially because “frequent” and “occasional” may not be precisely defined. We
also cannot assume that the difference in health between a former-smoker and a never-
smoker is the same as that between a current-smoker and a former-smoker in the same
way that 2 minus 1 is the same as 3 minus 2. Therefore we will use the CLASS statement.
First let us fit an ordinary regression to the data. We can do this using PROC GLM.

PROC GLM;

CLASS sex smokstat vituse;

MODEL betaplasma = age sex smokstat quetelet vituse calories

fat fiber alcohol cholesterol betadiet / SOLUTION;
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RUN;

The results are:

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 184.8972965 B 67.94380472 2.72 0.0069

AGE 0.7001720 0.74301573 0.94 0.3468

SEX 1 -31.4630580 B 31.56618636 -1.00 0.3197

SEX 2 0.0000000 B . . .

SMOKSTAT 1 45.9119033 B 30.81886225 1.49 0.1373

SMOKSTAT 2 40.7690632 B 31.09841805 1.31 0.1909

SMOKSTAT 3 0.0000000 B . . .

QUETELET -5.9340466 1.62873556 -3.64 0.0003

VITUSE 1 78.4010811 B 23.12631952 3.39 0.0008

VITUSE 2 44.3051936 B 25.25345442 1.75 0.0804

VITUSE 3 0.0000000 B . . .

CALORIES -0.0289505 0.05071633 -0.57 0.5685

FAT 0.0758120 0.80264713 0.09 0.9248

FIBER 6.1935866 2.81269155 2.20 0.0284

ALCOHOL 0.9808388 1.23318655 0.80 0.4270

CHOLESTEROL -0.0934808 0.10628837 -0.88 0.3798

BETADIET 0.0164936 0.00743796 2.22 0.0273

“B” here means that a block of terms included a linear dependency and could not
be estimated. This is just what should happen, and is not a problem, since the dummy
code for the baseline must be constrained to zero. Anyway, it seems that the statistically
significant predictors of plasma beta-carotene are vitamin use and dietary beta carotene
(two obvious potential direct sources of beta-carotene), plus fiber intake and Quetelet
ratio (perhaps markers for general healthy lifestyle and diet).

Let’s fit a SCAD-penalized model. Suppose we want to be careful not to delete po-
tentially useful predictors, so we use GCV instead of BIC.

PROC SCADLS DATA=carrots;

CLASS sex smokstat vituse;

MODEL betaplasma = age sex smokstat quetelet vituse

calories fat fiber alcohol cholesterol betadiet;

FORCEIN betadiet;

SELECTION gcv;

MAXITER 5000;

RUN;

We see the following output:
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Number of observations: 315

Number of predictors: 11

Predictor forced in: BETADIET

Tuning parameter details:

Selected lambda: 5.9042

GCV: 28916.1483

Converged in 3427 iterations.

Final Estimates:

Variable Level Frequency Beta Std. Errs.

--------------------------------------------------------

Intercept : 215.71950 62.665893

AGE : 0.403144 0.671943

SEX 1 : 42 -4.399076 12.750052

2 : 273 (Reference)

SMOKSTAT 1 : 157 6.343082 11.295655

2 : 115 0.000000 0.000000

3 : 43 (Reference)

QUETELET : -5.710370 1.604427

VITUSE 1 : 122 79.960998 22.138816

2 : 82 41.087703 23.613611

3 : 111 (Reference)

FIBER : 5.098775 2.062451

CHOLESTERO : -0.188034 0.074711

BETADIET : 0.018059 0.007389

Age, sex, smoking status, Quetelet ratio, vitamin use, fiber, cholesterol, and (of course)
dietary beta-carotene were kept as predictors. In the case of smoking status use, the
category opposite the baseline was included in the model as significantly different from
the baseline, but the intermediate category was collapsed with the baseline. In such a
situation, and unlike unpenalized regression, the choice of baseline matters in terms of
the final predicted values. This is because it is the moderate smokers could be joined
with the nonsmokers or heavy smokers, depending on which baseline is chosen. This
would lead to different predictions for some individuals. To try another baseline, use the
DESCENDING option.

To reverse the choice of baseline, we could have instead used the code:

PROC SCADLS DATA=carrots;

CLASS sex smokstat vituse;

MODEL betaplasma = age sex smokstat quetelet vituse
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calories fat fiber alcohol cholesterol betadiet;

FORCEIN betadiet;

GRIDSIZE 250; MAXITER 250;

RUN;

We get

PROC SCADLS -- Data and Model Summary and Fit Statistics

Number of observations: 315

Number of predictors: 11

Predictor forced in: BETADIET

Tuning parameter details:

Selected lambda: 6.8096

GCV: 28647.7094

Converged in 392 iterations.

Final Estimates:

Variable Level Frequency Beta Std. Errs.

--------------------------------------------------------

Intercept : 307.44540 62.537938

AGE : 0.318870 0.664231

SMOKSTAT 3 : 43 -31.45941 23.176080

2 : 115 0.000000 0.000000

1 : 157 (Reference)

QUETELET : -5.974736 1.602367

VITUSE 3 : 111 -72.54134 21.096472

2 : 82 -16.60578 16.518081

1 : 122 (Reference)

FIBER : 4.855713 2.065164

CHOLESTERO : -0.182577 0.073385

BETADIET : 0.017885 0.007364
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