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AN INTRODUCTION TO LATENT CLASS AND LATENT TRANSITION ANALYSIS 
 

INTRODUCTION 

Often quantities of interest in psychology cannot be observed directly. These 

unobservable quantities are known as latent variables. In addition to being unobservable, latent 

variables tend to be complex, often multidimensional, constructs. Unlike height, which can be 

measured with a single assessment, depression or temperament cannot be adequately measured 

with only one observed variable, such as a single questionnaire item. This complexity can be 

handled using multiple observed variables as indicators of the latent variable; this approach 

provides a more complete picture of the construct and allows estimation of measurement error. 

Examples of latent variables in the psychological literature include temperament (Stern, Arcus, 

Kagan, Rubin, & Snidman, 1995), cognitive ability (Humphreys & Janson, 2000), health 

behaviors (Maldonado-Molina & Lanza, 2010), and motivation (Coffman, Patrick, Palen, 

Rhoades, & Ventura, 2007). Knowing that they are imperfect measures, using data from 

available observed variables provides the best measures of latent variables. When several 

observed variables are used to assess an underlying latent variable, we have a basis for removing 

measurement error, leading to better measurement of the latent variable. 

The fundamental premise of any latent variable model is that the covariation among 

observed variables is explained by the latent variable. There are four latent variable frameworks 

that model the relationship between observed variables and a latent variable. Figure 1 depicts this 

relationship for the four frameworks. Which framework is appropriate depends on whether the 

observed variables and latent variable are considered to be continuous or categorical. In factor 

analysis or covariance structure analysis, observed variables, usually continuous, map onto 
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continuous latent variables assumed to be normally distributed (Jöreskog & Sörbom, 1996). 

Latent trait analysis (Spiel, 1994) refers to discrete observed variables mapping onto a 

continuous latent variable. For example, a set of observed variables measuring aptitude, coded as 

correct or incorrect, might be seen as indicators of the underlying latent trait, in this case ability. 

In latent profile analysis, continuous observed variables map onto a discrete latent variable. 

Latent class analysis (LCA) models the relationship between discrete observed variables and a 

discrete latent variable.  

Figure 1 about here 

The present chapter will focus on this last framework, LCA. The first section introduces 

the concept of a latent class and then presents the mathematical model. This is followed by a 

discussion of parameter restrictions, model fit, and the measurement quality of categorical 

variables. The second section demonstrates LCA through an examination of the prevalence of 

depression types in adolescents. The third section presents longitudinal extensions of LCA and 

contains an empirical example on adolescent depression types, where we extend the previous 

analysis to examine change in depression types over time. In the final sections we mention 

several other extensions to the latent class model and areas that merit additional research in the 

future. 

LATENT CLASS ANALYSIS 

The Concept of a Latent Class 

Latent classes can be thought of as a system to classify groups of individuals according to 

some construct that is not directly measurable. Suppose, for example, a researcher interested in 
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the construct temperament hypothesizes that this construct is made up of qualitatively different 

categories. The researcher can measure several indicators of temperament, and then use LCA to 

identify two or more temperamental types into which people might be classified. In examples 

presented throughout this chapter, latent class models have been applied in the study of 

psychological and behavioral phenomena. Note that for some constructs (such as temperament) 

an individual's latent class membership is generally expected to remain the same over time, 

whereas for other constructs (such as substance use) it is possible for individuals to move 

between latent classes over time. 

Theory suggests that there are two main temperamental types of children, namely 

inhibited and uninhibited, characterized by avoidance or approach to unfamiliar situations 

(Kagan, 1989). Stern, et al. (1995) used latent class analysis to test this theory empirically, 

comparing a model with two temperamental types of children to models with three and four 

types. Infants in two cohorts of sample sizes 93 and 76 were measured on three categorical 

variables: motor activity, fret/cry, and fear. Two-, three-, and four-class models were fit for each 

cohort. For both cohorts, a two-class solution appeared to represent the data adequately, although 

the sample size may not have provided enough power to detect additional classes. 

Latent class models have also been used to explore the onset of substance use behaviors 

during adolescence. Following Kandel's (1975) introduction of the concept of stages in substance 

use, Collins and colleagues (Collins, Graham, Rousculp, & Hansen, 1997; Hyatt & Collins, 

2000) explored this construct as a categorical latent variable. Using data from the Adolescent 

Alcohol Prevention Trial (Hansen & Graham, 1991), Collins et al. (1997) identified a stage-
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sequence of substance use made up of the following eight latent classes: No Use; Alcohol Use; 

Alcohol Use With Drunkenness; Tobacco Use; Alcohol and Tobacco Use; Alcohol Use With 

Drunkenness and Advanced Use; Alcohol, Tobacco and Advanced Use; and Alcohol Use With 

Drunkenness, Tobacco Use, and Advanced Use. This model specifies that adolescents can first 

move from the No Use latent class to either the Alcohol Use or the Tobacco Use latent class, and 

then progress to latent classes characterized by more advanced substance use. Notice that not all 

possible combinations of substances are represented in this latent class model. For example, a 

latent class characterized by alcohol and advanced use without drunkenness and tobacco use 

does not exist. The eight latent classes specified by this model were sufficient to represent the 

data. 

In addition to modeling actual substance use behavior, LCA has been used to identify 

four subgroups of high school seniors according to their patterns of motivations to drink alcohol 

(Coffman et al., 2007). The first latent class was characterized mainly by a desire to experiment 

with alcohol (Experimenters, 36%); the second latent class used alcohol mainly to get high and 

have a good time (Thrill-Seekers, 32%); the third subgroup reported that their primary 

motivation to use alcohol was to relax (Relaxers; 15%); and the fourth latent class was 

characterized by a wide range of motivations to drink, including anger/frustration and getting 

away from problems (Multi-Reasoners, 18%). Membership in the Multi-Reasoners latent class 

was associated with early initiation of alcohol use, past-year drunkenness, and drinking before 

4:00 PM. 
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LCA has been applied to various educational studies, including Aitkin, Anderson, and 

Hinde’s (1981) examination of the number of different classes of teaching style in the UK. 

Teaching style was characterized by the presence or absence of 38 different teaching behaviors 

in 468 4th-grade teachers. A latent class approach to modeling this type of data is appealing 

because it summarizes data from many different questionnaire items in a parsimonious way. 

Although only two teaching styles were originally predicted, formal and informal, evidence was 

found for a three-class model. The first class was a more formal style, where the teachers used a 

firm timeline and restricted the students' behaviors. The data suggested that 48 percent of 

teachers had a formal style. The second class represented an informal teaching style, where 

teachers tended to have less strict classroom organization, integrated subjects, and encouraged 

individual work. This class encompassed 32 percent of teachers. The remaining 20 percent of 

teachers fell in the third latent class, a mixed teaching style, where certain behavior restrictions 

were enforced as in the formal group, but grading and homework were similar to the informal 

group. 

LCA has been used to apply the transtheoretical model of behavior change to various 

types of health behaviors, including smoking cessation (Martin, Velicer, & Fava, 1996), condom 

use (Evers, Harlow, Redding, & LaForge, 1998), and exercise (Gebhardt, Dusseldorp, & Maes, 

1999). Velicer and colleagues used LCA and its longitudinal extension latent transition analysis 

(LTA) to test competing models of the stages of change in smoking behavior (Velicer, Martin, & 

Collins, 1996; Martin, et al., 1996). Figure 2 shows the model that best represented the data. This 

model posits that individuals can move both forwards and backwards through the stages of 
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change, and that forward movement between any two adjacent times does not extend beyond a 

maximum of two stages. 

Figure 2 about here. 

Lanza, Savage, and Birch (2010) used LCA to classify women according to the various 

healthy and unhealthy weight-control strategies they employed over time. Fourteen strategies 

were included in the latent class model, including observed variables such as using appetite 

suppressants, reducing calories, reducing fats, reducing carbohydrates, and increasing exercise. 

The four latent classes identified were: No Weight Loss Strategies (i.e., non-dieters; 10.0%); 

Dietary Guidelines (26.5%), characterized by use of healthy weight control strategies such as 

increased fruits and vegetables intake, increased exercise, and decreased fat intake; Guidelines+ 

Macronutrient (39.4%), including individuals who have used traditionally healthy approaches as 

well as a low-carbohydrate diet; and a group of women who reported trying all healthy and 

unhealthy strategies (Guidelines+Macronutrient+Restrictive, 24.2%). The inclusion of covariates 

permitted an examination of how body mass index (BMI), weight concerns, desire to be thinner, 

disinhibited eating, and dietary restraint were related to weight-control strategy latent class. 

Dietary restraint was found to moderate the effect of disinhibition on membership in weight-loss 

strategy group, providing insight into how one might tailor an intervention program that aims to 

prevent or reduce unhealthy dieting behaviors. 

Several studies have explored subtypes of depression using LCA (e.g. Parker, Wilhelm, 

Mitchell, Roy, & Hadzi-Pavlovic, 1999; Sullivan, Kessler, & Kendler, 1998). For example, 

Sullivan et al. (1998) used 14 DSM-III-R depressive symptoms in an epidemiological data set to 
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identify six latent classes: Severe Typical, Mild Typical, Severe Atypical, Mild Atypical, 

Intermediate, and Minimal Symptoms. Although the number and type of latent classes identified 

depended on both the sample and the observed variables included in the model, LCA provided a 

means of empirically testing competing theories about depressive subtypes for a given data set.  

A more recent application of LCA involved the identification of subgroups of individuals 

based not on their own traits or behaviors, but rather on their ecological/contextual profiles. This 

framework provides a way, for example, to organize individuals according to the particular set of 

risk factors to which they are exposed. Latent classes of risk (i.e., risk profiles) that are 

associated with poorest outcomes might then be useful targets for intervention programs. As an 

example, Lanza, Rhoades, Nix, Greenberg, and the CPPRG (2010) identified the following four 

profiles of 13 risk factors across child, family, school, and neighborhood domains in a diverse 

sample of children in kindergarten: Two-Parent Low-Risk, Single-Parent/History Of Problems, 

Single-Parent Multilevel Risk, and Two-Parent Multilevel Risk. Membership in each latent class 

varied substantially across race and urbanicity, and was highly related to 5th-grade externalizing 

problems, failing grades, and low academic achievement. The use of LCA to identify risk 

profiles was then extended to examine differential treatment effects across latent classes (Lanza 

& Rhoades, in press). This approach, which is analogous to including a latent moderator in the 

evaluation of a program’s effect, can be used to suggest subgroups of individuals that hold 

promise to respond most strongly to the program and to describe other subgroups that may 

benefit from a modified program. 
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The LCA Mathematical Model 

Latent class theory is a measurement theory for a categorical latent variable that divides a 

population into mutually exclusive and exhaustive latent classes (Lazarsfeld & Henry, 1968; 

Goodman, 1974). The latent variable is measured by multiple categorical indicators. During the 

1970's, two important papers were published which together provided researchers with the 

theoretical and computational tools for estimating latent class models. First, Goodman (1974) 

described a maximum-likelihood estimation procedure for latent class models. Second, a broadly 

applicable presentation of the use of the expectation-maximization (EM) algorithm, an iterative 

technique that yields maximum-likelihood estimates from incomplete data, was introduced 

(Dempster, Laird, & Rubin, 1977). In LCA the latent (unobserved) variables can be considered 

to be missing data. Several software packages are available for conducting LCA and its 

extensions, including PROC LCA & PROC LTA (Lanza, Dziak, Huang, Xu, & Collins, 2011), 

Latent Gold (Vermunt & Magidson, 2005), Mplus (Muthén & Muthén, 1998-2010), and LEM 

(Vermunt, 1997a,b).  

Latent class models are particularly useful when the theoretical construct of interest is 

made up of qualitatively different groups, but the group membership of individuals is unknown 

and therefore must be inferred from the data. Although it might be tempting to try to classify 

individuals based on their manifest data, LCA has several important advantages over simple 

crosstabulation methods. First, a latent variable approach to identifying qualitatively different 

classes of individuals involves using multiple observed variables as indicators of the latent 

variable. This provides a basis for estimating measurement error, yielding a clearer picture of the 

underlying latent variable. Second, LCA can be a confirmatory procedure. For a set of discrete 
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observed variables, the user must specify the number of latent classes. LCA then estimates the 

parameters and provides a fit statistic. A confirmatory procedure provides a means of testing a 

priori models and comparing the fit of different models. Third, when measurement error is 

present, many individuals' responses do not point unambiguously to membership in one 

particular group. A latent variable approach can help the researcher interpret large contingency 

tables, providing a sense of both the underlying group structure and the amount of measurement 

error associated with particular observed variables. 

In latent class models, the data are used to estimate the number of classes in the 

population, the relative size of each class, and the probability of a particular response to each 

observed variable given class membership. Suppose that there are j = 1, …, J observed variables, 

and that variable j has response categories r j = 1, ..., Rj; suppose also that the latent variable has c 

= 1, ..., C latent classes. Let y represent a particular response pattern (i.e., a vector of possible 

responses to the observed variables), and let Y represent the array of all possible ys. Each 

response pattern y corresponds to a cell of the contingency table formed by crosstabulating all of 

the observed variables, and the length of the array Y is equal to the number of cells in this table. 

As an example, if there are eight dichotomous observed variables corresponding to responses yes 

or no to depression symptoms, an individual reporting no symptoms would have the response 

pattern {1,1,1,1,1,1,1,1}, and someone experiencing the first four symptoms but not the last four 

would have the response pattern {2,2,2,2,1,1,1,1}. 

The estimated proportion of a particular response pattern P(Y = y) can be expressed as a 

function of two types of parameters. First, the latent class prevalences, which will be referred to 
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as γ parameters, represent the proportion of the population that falls into each latent class. 

Because the latent classes are mutually exclusive and exhaustive (i.e., each individual is placed 

into one and only one latent class), the γ parameters sum to 1. Second, the item-response 

probabilities, which we will refer to as ρ parameters, represent the probability of a particular 

response to a manifest variable, conditioned on latent class membership. These ρ parameters 

express the relationship between the observed variables and the latent variable. The item-

response probabilities bear a close conceptual resemblance to factor loadings, in that they 

provide a basis for interpretation of the meaning of the latent classes. However, it is important to 

remember that they represent probabilities rather than regression coefficients. A ρ parameter near 

0 or 1 represents a strong relationship between the observed variable and the latent construct. 

This would mean that, given latent class, we can predict with near certainty how an individual 

would respond to that observed variable. On the other hand, for dichotomous observed variables, 

a ρ parameter near .5 means that the observed variable does not provide any information above 

random chance in placing the individual in the latent class.  

Let us establish an indicator function ( = )j jI y r  that equals 1 when the response to 

variable j  = jr , and equals 0 otherwise. The probability of observing a particular response 

pattern, or cell in the contingency table cross-classifying the observed variables, can be written 

as 

 �(� = �) = ∑ 		
�� 

∏ 	�
��� ∏ 	��

���� ��,��|

�(�����),  (1) 
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where 

 is the probability of membership in latent class � and ��,��|

�(�����) is the probability of 

response �� to observed variable �, conditional on membership in latent class �. The 
 parameters 

represent a vector of latent class membership probabilities that sum to 1. The � parameters 

represent a matrix of item-response probabilities conditional on latent class membership. 

The latent class model is defined by making two critical assumptions. First, all 

individuals in a latent class are assumed to have the same item-response probabilities for the 

observed variables. For example, all individuals in the latent class associated with an inhibited 

temperament type (Inhibited class), are assumed to have the same probability of displaying high 

motor activity. Second, there is an assumption of conditional independence given latent class. 

This implies that within each latent class, the J indicators are independent of one another. For 

example, individuals' temperament type explains any relationship among their reports of motor 

activity, fret/cry and fear. This second assumption allows the probability of a particular response 

pattern to be expressed as shown in Equation 1, without conditioning on anything in addition to 

latent class. 

Multiple-Groups LCA and LCA with Covariates 

Grouping variables can be included in LCA in much the same way that they can be 

included in structural equation models. In LCA, grouping variables serve two primary purposes. 

The first is to allow for a statistical test of measurement invariance; that is, a test can be 

conducted to determine whether the item-response probabilities that define the latent classes 

differ across two or more groups. Whenever it is reasonable to do so, item-response probabilities 

should be constrained to be equal across groups so that group comparisons are made using a 
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common definition of the underlying latent classes. The second purpose of multiple-groups LCA 

is to compare the latent class prevalences across groups. For example, in the study by Lanza, 

Rhoades, et al. (2010) described above, the prevalence of the risk profiles varied substantially 

across race/urbanicity groups. Most notably, the prevalence of the Two-Parent Low Risk latent 

class was 55% for rural White children, 38% for urban White children, and only 11% for urban 

African American children. Because the item-response probabilities were constrained to be equal 

across groups, these comparisons were based on subgroups characterized by the same 

intersection of risks. 

In addition to grouping variables, covariates (also called exogenous or concomitant 

variables in the literature) can be incorporated into the latent class model in order to predict 

latent class membership (Collins & Lanza, 2010; Dayton & Macready, 1988; van der Heijden, 

Dessens, & Bockenholt, 1996) or to predict the item-response probabilities (Pfefferman, Skinner 

and Humphreys, 1998). Most commonly, covariates are used to predict latent class membership 

and are added to the latent class model via multinomial logistic regression; covariates can be 

discrete, continuous or higher-order terms (e.g., powers or interactions). For example, by 

including alcohol use as a covariate it is possible to investigate questions such as, "For a one-unit 

increase in alcohol use, how do the probabilities of membership in the depression latent classes 

change?" Including interaction terms makes it possible to address questions such as whether the 

effect of alcohol use on membership in latent classes of depression differs for males and females 

(i.e., whether gender moderates the association between alcohol use and latent class 

membership). 
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An extended latent class model including a grouping variable V, with q = 1, …, Q groups, 

and a single covariate X can be described as follows (note that the model can be extended to 

include two or more covariates). The latent class model can be expressed as 

�(� = �|� = �, = !) = ∑ 		
�� 

|"(#)∏ 	�
��� ∏ 	��

���� ��,��|
,"
�(�����),  

where ��,��|
,"
�(�����) is the probability of response �� to observed variable �, conditional on 

membership in latent class � and group q, and 

|"(#) is a standard baseline-category 

multinomial logistic regression model (e.g., Agresti, 2002): 



|"(#) = �($ = %| = !,� = �) =
&'(%|�)'*%|�!

* + ∑ &'(%,|�)'*%,|�!$-*
%,�*

 

for c’=1, …, C-1, and where C is the designated reference class. Note that in this model the ρ 

parameters are not dependent on the covariate X. 

Estimation 

The EM algorithm is usually used to estimate the parameters of latent class models 

(Dempster, et al., 1977; Goodman, 1974). This algorithm alternates between the expectation step 

(E-step), and the maximization step (M-step). At each step of the EM algorithm the current set of 

estimates is compared with the set from the previous step. When the difference between the 

estimates becomes smaller than a specified criterion, the program has converged on a maximum 

of the likelihood function. Depending on the likelihood function of a given model, there may be 

a distinct global maximum, or there may be one or more local maxima.  



Latent Class Analysis    17 

The issue of local maxima is critical in latent class models. If there are several local 

maxima, the set of starting values will determine which local maximum is reached. It is 

important to explore multiple solutions to ensure that the maximum-likelihood estimates 

represent the best solution. This can be done by estimating the parameters based on several 

different sets of random start values. Although the best outcome is one in which a single mode is 

identified, it is common to find different solutions corresponding to different local maxima. In 

this case there are several ways to proceed. One approach is to examine the distribution of 

solutions and assume that the solution reached most often is the best one and thus can be selected 

as the final model. A second approach is to select the solution with the best fit, which 

corresponds to the highest likelihood. A third approach is to simplify the model being fit, which 

will reduce the number of parameters being estimated. Often this is enough to ensure that just 

one solution is reached. Any combination of these approaches can be used together in deciding 

upon a final solution. Fortunately, for many latent class analyses only one solution will be 

identified. 

Standard Errors 

Standard errors are not a by-product of the EM algorithm, although several methods for 

obtaining estimates of the standard errors have been proposed. One approach used in most LCA 

software programs is a likelihood-based one which involves taking the inverse of the information 

matrix (see Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997 for technical details). Several 

Bayesian approaches also have been proposed, including the addition of a mild smoothing prior 

so that the information matrix can be inverted (Rubin & Schenker, 1987) and a technique called 

data augmentation (Tanner & Wong, 1987), where the latent class variable is imputed multiple 
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times so that variance estimates can be obtained (see Lanza, Collins, Schafer, & Flaherty, 2005 

for a demonstration related to LCA). 

In addition to yielding standard errors for each parameter, data augmentation allows for 

more complex hypothesis tests involving multiple parameters. For example, in some applications 

it may be useful to use data augmentation with LTA to define a stability parameter that is the 

weighted (by the initial latent class prevalences) sum of all transition probabilities that 

correspond to membership in the same latent class over time. Group differences in stability can 

then be examined. Hyatt, Collins, and Schafer (1999) contains an example of this, as well as an 

explanation of how to calculate the difference in proportions, relative risks, and associated 

standard errors for combinations of LTA parameters. In this study WinLTA (Collins & 

Wugalter, 1992) was used to examine differences in the onset of substance use for females with 

early pubertal timing and females who do not experience early puberty. Early-developing 

females were less likely to be in the No Substance Use latent class and more likely to be in the 

Alcohol and Cigarettes and Alcohol, Cigarettes, Drunkenness, and Marijuana latent classes in 

both 7th and 8th grades. Also, early-developing females were more likely to begin using 

substances between 7th and 8th grades. Although a group difference in the overall stability in 

substance use over time was found in the anticipated direction, this difference did not reach 

statistical significance. 

Missing Data 

As has been reviewed extensively in the missing data literature (e.g. Schafer, 1997; 

Collins, Schafer, & Kam, 2001), there are three major classifications of missing data. If 
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missingness on a variable Y depends on the variable itself (e.g., a participant in a drug use 

prevention study avoids a measurement session because he is using drugs), this is referred to as 

missing not at random (MNAR). If missingness on Y does not depend on Y itself, this is referred 

to as missing at random (MAR). One example of MAR is missingness caused by poor readers 

failing to finish a drug use questionnaire during an intervention. The special case of MAR where 

the cause of missingness is completely unrelated to Y is referred to as missing completely at 

random (MCAR). (For a thorough introduction to modern missing-data procedures, see Schafer 

and Graham, 2002.) 

Most LCA procedures, including the program used in the empirical analyses reported 

below (PROC LCA; Lanza, et al., 2011), employ a maximum-likelihood routine that adjusts for 

MAR missingness, but not for MNAR missingness. Several simulation studies have documented 

the success of parameter recovery under various conditions. For situations where the ρ 

parameters are above .8 or below .2 for dichotomous indicators, parameter recovery for data that 

are MCAR or MAR is not substantially biased regardless of the amount of missing data, the 

sample size, or the latent class model (Hyatt & Collins, 1998; Kolb & Dayton, 1996). It is 

important to note that the maximum-likelihood missing data procedure will be fully successful 

only if all variables relevant to missingness are included in the model. If there are variables 

relevant to missingness that cannot be included, it may be preferable to use a multiple imputation 

approach to include these variables (Collins, et al., 2001).  
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The Use of Parameter Restrictions 

Restricted parameters are either fixed, where the value is set to a particular value and not 

estimated, or constrained to be equal to other parameters in an equivalence set, so that only one 

parameter is estimated for the entire set. In a classic article, Goodman (1974) presented the 

estimation of restricted latent class models using the EM algorithm. Often latent class models are 

fit without the use of any parameter restrictions. Such unrestricted models can be quite 

informative, and they are especially useful for exploring new models. However, parameter 

restrictions can help perform two important tasks in latent class models: achieving identification 

and specifying or testing specific features of a model. 

Parameter restrictions can be useful in achieving identification, because fixing or 

constraining parameters reduces the number of parameters to be estimated. Underidentification 

refers to the situation when there are too many parameters to estimate given the information 

available in a certain data set. One necessary condition for identification is that the number of 

independent parameters to be estimated be less than the number of possible response patterns. In 

some cases, such as for latent class models with few possible response patterns, parameter 

restrictions can be used to achieve this condition. However, satisfying this condition does not 

ensure an identified model. Having a large sample size relative to the number of response 

patterns helps identification. When the sample size is small relative to the number of response 

patterns (i.e. the contingency table is sparse), parameter restrictions can greatly aid in 

identification. 
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Second, parameter restrictions are useful tools for specifying or testing various features 

of a model. For example, the ρ parameters define the meaning of the latent classes. If we have 

measurement invariance across groups then meaningful comparisons of the latent class 

prevalences can be made. Structural invariance across groups in the measurement of the latent 

variable is a testable hypothesis. The parameter estimates can be freely estimated in one analysis, 

and constrained equal across groups in another; then, the fit of the two models can be compared. 

As an example, a researcher interested in comparing gender differences in the prevalence of two 

temperament types in a sample of infants may wish to compare a model with all parameters 

freely estimated to one in which the item-response probabilities by class are constrained equal 

across the two genders. If measurement invariance by class can be established across groups (i.e., 

male and female), this is evidence that the same construct is being measured in males and 

females; therefore, meaningful cross-gender comparisons of the prevalence of the various 

temperament types can be made. 

The hierarchical or Guttman model (Rindskopf, 1983) is another example of a latent class 

model for which there is a theoretical justification to impose parameter restrictions. In Guttman 

models, it is assumed that there is an order among the observed variables that form a scale. In 

models of learning, this order corresponds to the difficulty of passing each task assessed by the 

observed variables. For example, if three skills are measured and assumed to be hierarchical in 

level of difficulty, and a pass is denoted 1 and a fail denoted 0, we might restrict the parameters 

so that the latent classes correspond to the patterns 000, 100, 110, and 111. The fit of such a 

model can then be compared to the fit of an unrestricted model to see if the Guttman scale holds 

in the data. 
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Model Selection and Goodness-of-Fit 

Absolute model fit. Choosing the number of latent classes is an important issue and can 

be somewhat subjective; the choice can be driven by both empirical evidence and theoretical 

reasoning. For example, if theory suggests that there are only two temperament types, the fit of a 

two-class model can be assessed. A more empirical approach would be to examine models with 

two, three and four latent classes to see which solution is most interpretable or provides the best 

fit. The typical approach to model fit in LCA is to compare the response pattern frequencies 

predicted by the model with the response pattern frequencies observed in the data. The predicted 

response pattern frequencies are computed based on the parameter estimates produced in the 

LCA. The two most common measures of fit in a contingency table analysis are the Pearson chi-

square statistic, X2, and the likelihood-ratio statistic, G2. The likelihood-ratio statistic has the 

advantage that nested models can be compared by a likelihood-ratio test, with the resulting 

statistic distributed as chi-square, and thus is often preferred to the Pearson chi-square. The 

likelihood-ratio statistic is calculated by 

  

     

where y represents a response pattern (i.e., a cell in the contingency table formed by cross-

tabulating all observed variables). This statistic expresses the degree of agreement between these 

predicted frequencies and the observed frequencies. 

The G2 is asymptotically distributed as chi-square, with degrees of freedom equal to 

number of possible response patterns minus number of parameters estimated minus 1. The term 
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"asymptotically" means that a chi-square distribution is a good approximation when the number 

of observations in each cell of the contingency table is sufficiently large. However, latent class 

models can often involve large contingency tables, resulting in a contingency table with many 

sparsely populated cells. When the ratio N/k becomes small, where N is the sample size and k is 

the number of cells in the contingency table, the distribution of the G2 is not well-approximated 

by the chi-square distribution. Unfortunately, under these circumstances the true distribution of 

the G2 is not known, rendering it of limited utility for model selection. This applies to all 

contingency table models, and is particularly a problem in latent class models with large 

numbers of indicators. For a G2 difference test comparing two nested models, however, the 

distribution usually is better approximated by the chi-squared distribution and thus hypothesis 

testing is more reliable. 

Relative model fit. A pair of nested models consists of a simpler model and a more 

complex model. Some parameters restricted in the simpler model are estimated in the more 

complex model. Thus, the simpler model can be considered a version of the more complex 

model. Two nested latent class models can be compared statistically by taking the difference of 

their G2 values. This difference is distributed as chi-square with degrees of freedom equal to the 

difference in the degrees of freedom associated with the two G2s. If the difference in G2 is 

nonsignificant, it means that the more parsimonious model fits about as well as the more 

complex model, and thus there is no benefit to estimating the parameters in the more complex 

model. If the difference in G2 is significant, it means that the additional parameters estimated in 

the more complex model are necessary to achieve adequate fit. The G2 difference test can be 

quite useful when comparing various patterns of parameter restrictions for latent class models 
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with a given number of classes. For example, an investigator interested in conducting an 

omnibus test for gender differences in the prevalence of temperament types in infants can fit a 

model that constrains the γ parameters (the probability of membership in each temperament type) 

to be equal across males and females in one model, and fit a second model that freely estimates 

the γ parameters. The G2 difference test between the two models will indicate whether or not it is 

reasonable to impose this equality restriction. If the G2 difference test reaches statistical 

significance, then the conclusion would be that the probabilities of membership in the 

temperament types vary by gender. 

Ideally, it would be helpful to use this approach to help determine the appropriate number 

of latent classes by comparing the fit of two models, such as when an investigator wants to 

compare a model with two temperament types to a model with three temperament types. 

Unfortunately, two models with different numbers of latent classes cannot be compared in this 

way because parameters of the simpler model take on boundary values of the parameter space 

(Everitt, 1988; Rubin & Stern, 1994). In this case, the distribution of the G2 test statistic is 

undefined (McLachlan & Peel, 2000). 

Various model selection information criteria have been proposed for comparing models 

with different numbers of classes, including the Akaike Information Criterion (AIC; Akaike, 

1974), Bayesian Information Criterion (BIC; Schwarz, 1978), consistent AIC (CAIC; Bozdogan, 

1987), and adjusted BIC (a-BIC; Sclove, 1987). These information criteria are penalized log-

likelihood test statistics, where the penalty is two times the number of parameters estimated for 

the AIC and the log of N times the number of parameters estimated for the BIC. Results of a 



Latent Class Analysis    25 

simulation study conducted by Lin and Dayton (1997) suggest that, although the AIC performs 

better than the BIC or the CAIC, the AIC tends to err on the side of selecting models that are 

more complex than the true model. Another drawback to this approach is that these methods 

serve only to compare the relative fit of several models under consideration, but do not help in 

determining whether a particular model has sufficiently good fit in an absolute sense. A 

parametric bootstrap of the goodness-of-fit measures (referred to as the bootstrap likelihood-ratio 

test, or BLRT) has also been proposed for latent class models (Collins, Fidler, Wugalter, & 

Long, 1993; Langeheine, Pannekoek, & van de Pol, 1996) and has been shown to perform well 

for latent class models with item-response probabilities at or above .8 (Nylund, Asparouhov, & 

Muthén, 2007). This method, also referred to as Monte Carlo sampling, involves repeatedly 

sampling from the model-based parameter estimates to get a distribution of the fit statistic under 

the assumption that the model is true. This method yields an empirical distribution of the fit 

statistic, forgoing the use of a theoretical distribution altogether. 

A Bayesian approach to model monitoring using a posterior predictive check distribution 

has been proposed as a method for comparing models with different numbers of latent classes 

(Rubin, 1984; Rubin & Stern, 1994). This is an empirical, simulation-based procedure where the 

observed value of the test statistic is compared with its posterior predictive check distribution 

under the null model to determine if the data are consistent with the null model. The p-value 

indicates the probability of a result more extreme than the data under the posterior predictive 

check distribution of the test statistic. This is an appropriate method for comparing two models 

where there is a set of parameters distinguishing them, instead of a single parameter. For 

example, the posterior predictive check distribution can be used to test the validity of a five-class 
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model versus a six-class model. The first step is to draw a set of parameter values from their joint 

posterior distribution using a Markov chain sampling approach; specifically, a data augmentation 

algorithm. The second step is to create a data set the same size as the original using random 

draws from appropriate distributions with the chosen parameter values. The fit of the model to 

this imputed data set is assessed, and this process is repeated many times to obtain a distribution 

of the fit statistic. This is a very promising but complex approach, and widely available software 

for this procedure is not yet available. Hoijtink (1998; Hoijtink & Molenaar, 1997) presents 

several examples where the fit of constrained latent class models are assessed by applying the 

posterior predictive check distribution to several goodness-of-fit statistics. 

In considering model selection in LCA, it may be helpful to draw a comparison with 

factor analysis. In factor analysis, multiple continuous observed variables are mapped onto 

several latent factors. In contrast, the latent class model maps multiple categorical observed 

variables onto several categories of a latent variable. In factor analysis both exploratory and 

confirmatory approaches can be used in selecting the number of factors. All factors with 

eigenvalues greater than one are often selected in an exploratory factor analysis. An exploratory 

approach to LCA might involve the user fitting a two-class solution to a data set, then a three-

class solution, and so on, and comparing the various solutions in a rough way using fit statistics 

and criteria. In this framework there is no rule of thumb for selecting the smallest number of 

latent classes that can adequately explain the structure in the data. The closest analog might be to 

create a table that summarizes the G2 value, degrees of freedom, and information criteria for each 

number of classes fit to the data. The most parsimonious model (i.e., the model with the smallest 

number of classes) that provides adequate fit could be selected as the one with the most 
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appropriate number of latent classes. This approach is demonstrated in the empirical example on 

adolescent depression presented below. 

A LATENT CLASS EXAMPLE: ADOLESCENT DEPRESSION 

We will illustrate the latent class model by examining adolescent depression in data from 

The National Longitudinal Study of Adolescent Health (Add Health; Harris et al., 2009). One 

theory suggests an underlying latent variable made up of two mutually exclusive and exhaustive 

groups of individuals: those who are depressed and those who are not. An alternate theory 

hypothesizes that there are several different types or levels of depression. These two competing 

theories can be examined empirically by fitting several different latent class models to the data 

set. 

The dataset for this example comes from the Add Health study, which was mandated by 

Congress to collect data for the purpose of measuring the effect of social context on the health 

and well-being of adolescents in the United States. The first wave of the sample included 11,796 

students 7th through 12th grades who were surveyed between April and December, 1995, and the 

second wave included the same individuals interviewed again between April and August of 

1996. The sample used in the LCA includes all 1,043 adolescents (51.6% male) from the public-

use dataset who were in 11th grade at Wave I. 

The prevalence of depression in this sample will be explored by examining eight 

observed variables, listed in Table 1: four indicators of sadness, two indicators of feeling disliked 

by others, and two indicators related to feelings of failing at life. These six-level variables were 

recoded so that 1 represents never or rarely experiencing the symptom in the past week, and 2 
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represents experiencing the symptom sometimes, a lot, most of the time, or all of the time during 

the past week. It is important to have only a few levels for each variable because LCA is based 

on data in the form of a contingency table and extreme sparseness of cells can lead to problems 

in model estimation. As the number of levels within variables increases, so does the number of 

parameters in the model. A balance between retaining information in the original variables and 

collapsing categories must be struck, as identification can be difficult to attain when too many 

parameters are estimated. 

Table 1 about here 

The eight observed variables are manifest indicators of the latent variable Depression. In 

our example, LCA will allow us to arrive at a model that we believe best represents the relation 

between these eight variables and Depression. We are interested in the latent classes of 

depression that emerge, and the prevalence of each class.  

For our example, we first fit a one-class solution, which yielded a G2 of 1837.5 with 247 

degrees of freedom. We then fit models with two classes, three classes, four classes, and so on, 

up to eight classes. Table 2 reports for each model the degrees of freedom, G2 likelihood-ratio 

test statistic, four information criteria (AIC, BIC, CAIC, and a-BIC), BLRT, entropy, and the 

percentage of 1000 sets of random starting values that converged to the maximum-likelihood 

solution (referred to as Solution % in Table 2). This last statistic indicates how confident the 

investigator can be that the maximum-likelihood solution, as opposed to a local maximum, was, 

in fact, identified. The information criteria suggest that models between four (based on the BIC 

and CAIC) and eight (for the AIC) latent classes should be considered as optimizing the balance 
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between parsimony and fit. Upon careful inspection of the solutions corresponding to these 

models, along with the BLRT, entropy, and solution %, we selected the five-class solution (G2 of 

240.6 with 211 degrees of freedom) as our final model. 

Table 2 about here 

The Five-Class Solution 

Table 3 contains the parameter estimates for the five-class solution. The matrix of item-

response probabilities (ρ parameters) shows the probability of responding sometimes, a lot, most 

of the time, or all of the time to each of the eight observed variables given class membership. 

(The probability of responding never or rarely to each observed variable given class membership 

can be calculated by subtracting this value from 1.0.) Probabilities greater than .50 are marked in 

bold to facilitate interpretation, indicating that individuals in that latent class are more likely to 

report that symptom than not. Interestingly, although no restrictions were imposed on the model 

parameters, the four indicators of sadness tend to operate similarly, as do the two indicators of 

being disliked and the two indicators of failure. The pattern of item-response probabilities lends 

itself to a straightforward interpretation of the five latent classes; thus, appropriate class labels 

can be assigned. Figure 3 presents the patterns of item-response probabilities graphically. 

Individuals in Latent Class 1, Non-Depressed, are expected to have a low probability of reporting 

any depression symptom. Members of Latent Class 2, Sad, are likely to report experiencing all 

sadness-related symptoms but not likely to report the other symptoms. Similarly, Latent Class 3 

is labeled Disliked, and Latent Class 4 is called Sad + Disliked. Latent Class 5, Depressed, is 

associated with a high probability of reporting all eight depression symptoms. 
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Table 3 about here 

 

Figure 3 about here 

Table 3 also reports the γ parameters, which represent the prevalence of each latent class. 

Note that these parameters must sum to 1, as they represent the distribution of a discrete random 

variable. The Non-Depressed latent class has the highest prevalence, with 39% of the sample 

expected to be members of this class. We expect 23%, 17%, and 15%, respectively, to be in the 

Sad, Disliked, and Sad + Disliked classes. Only 7% are expected to experience the highest level 

of depression. 

Multiple-Groups LCA: Gender Differences in Depression Classes 

Now that a five-class model for depression has been established in this sample of 

adolescents, it may be useful to examine how the prevalence of each depression latent class 

varies across different groups. For example, we might be interested in whether the prevalence 

rates vary for males and females. This can be investigated by estimating the γ and ρ parameters 

for each group and comparing the latent class prevalences. However, in order for these 

comparisons to be meaningful, it may be useful to impose measurement invariance across 

gender. This involves applying constraints such that each item-response probability is the same 

for males and females. The unrestricted five-class model where all parameters are freely 

estimated for both genders, and an alternative model where measurement is constrained to be 

equal across gender, are nested and can be compared directly using a G2 difference test. This test 
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will indicate whether it is reasonable to conclude that there is measurement invariance across 

groups. Because this test can be highly sensitive when many parameters are involved, however, 

it also can be useful to examine information criteria in deciding whether the restricted model 

(with equal measurement for males and females) is sufficient. In our example, the model with all 

parameters estimated freely has a G2 of 384.8 with 423 degrees of freedom (df; AIC = 560.8, 

BIC = 996.3), and the model that imposes measurement invariance across gender has a G2 of 

441.2 with 463 df (AIC = 537.2, BIC = 774.8). The G2 difference test is significant (G2 = 56.4, df 

= 40, p = .04), indicating that there are some differences between males and females in the 

measurement model. However, the information criteria suggest that the more parsimonious 

model is preferable given the number of df saved. After considering the measurement models for 

males and females when measurement varied across groups, we decided to impose measurement 

invariance by constraining the ρ parameters to be equal across gender. 

Table 4 shows results for a latent class model of depression with gender as a grouping 

variable. The matrix of item-response probabilities is very similar to that in Table 3. The latent 

class prevalences for males and females can now be compared. We can conduct an omnibus test 

for differences in the distribution of males and females' prevalence of depression by constraining 

all elements of the vector of γ parameters to be equal across gender (G2 = 467.8, df = 467), and 

comparing that to our present model (G2 = 441.2, df = 463). The G2 difference test is highly 

significant (G2 = 26.6 with 4 df), indicating that the prevalences of the five latent classes of 

depression differ substantially between males and females. Table 4 shows that the proportion of 

adolescents expected to be in the Depressed latent class is similar for males and females (.06 for 

each group), but the Non-Depressed latent class is more prevalent among males (.44 for males 
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versus .30 for females). In addition, gender differences appear in the middle levels of depression. 

Female adolescents are more likely to be in the Sad latent class (.25 versus .18) and the Sad + 

Disliked latent class (.22 versus .12), whereas male adolescents are more likely to be in the 

Disliked latent class (.20 versus .16). Figure 4 shows the gender differences in the prevalences of 

depression latent classes.  

Table 4 about here 

 

Figure 4 about here 

LCA with Covariates: Predicting Depression Latent Class Membership 

Covariates can be used to predict latent class membership in much the same way that 

predictors of an observed categorical outcome can be used in logistic regression analysis. An 

indicator for academic achievement (Grades) will be incorporated as a covariate in the model 

involving five latent classes of depression to determine whether it is a significant predictor of 

membership in the different latent classes. The Grades covariate represents the average grade on 

a four-point scale across English or language arts, mathematics, history or social studies, and 

science, and is based on the most recent grading period as reported by the adolescents (mean = 

2.78, sd = .75). A multinomial logistic regression model was specified to predict latent class 

membership from Grades; because the outcome is latent, the logistic regression parameters are 

estimated simultaneously with the latent class model so that class membership uncertainty is 

taken into account. The Non-Depressed latent class was specified as the reference group so that 
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any effect of Grades could be expressed in terms of increased odds of membership in each latent 

class involving depression symptoms relative to the latent class involving no depression 

symptoms. The specification of a different reference latent class would yield a mathematically 

equivalent solution, but provide parameter estimates that express the association differently. 

Table 5 shows the logistic regression parameter estimates, denoted β, as well as the 

corresponding odds ratios (exponentiated βs) and inverse odds ratios. Odds ratio confidence 

intervals not containing the value 1.0 indicate a significant effect of Grades. The results suggest 

that having higher grades is associated with lower odds of membership in the Disliked and 

Depressed latent classes relative to the Non-Depressed latent class. 

Table 5 about here 

LONGITUDINAL EXTENSIONS: REPEATED-MEASURES LCA AND LTA 

Often investigators in psychology are interested in developmental processes; that is, how 

constructs change over time. Development is often characterized by increases or decreases in a 

particular continuous variable over time. However, qualitative development can also be 

examined by modeling how individuals pass through categories or stages over time. Examples of 

stage sequences are abundant in psychology. These include Piaget's stage model of cognitive 

development (Piaget, 1973), Freud's stages of psychosocial development (Freud, 1961), 

Kohlberg's stage sequence of moral development (Kohlberg, 1966), and Erikson's stages of ego 

identity (Erikson, 1950). Several extensions of LCA to repeated-measures data have been 

proposed. Below we introduce two different frameworks for applying LCA to repeated-measures 
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data: repeated-measures LCA and LTA. We then extend our analysis of adolescent depression to 

two time points and demonstrate LTA in the context of this example. 

Repeated-measures LCA involves fitting a standard latent class model, but using as 

indicators one or more observed variables that were assessed at multiple time points. In this case, 

the latent classes are characterized by discontinuous patterns of change over three or more times. 

As an example, Lanza and Collins (2006) presented an eight-class model fit to six repeated 

assessments of past-year heavy episodic drinking. Participants comprised a national sample 

assessed at Time 1, high school; Times 2 and 3, college-age; Times 4 and 5, young adulthood; 

and Time 6, age 30. Each latent class represented a longitudinal pattern of heavy drinking. For 

example, the 2.6% of participants in the College Age Only latent class were characterized by the 

absence of heavy drinking in high school, young adulthood and adulthood, but engaged in the 

behavior during college ages. Although heavy drinking rates among college students did not 

exceed heavy drinking rates among the non-collegiate group at any age, college-enrolled 

individuals were significantly more likely to belong to the College Age Only latent class. Non-

collegiate individuals, however, even those who were not drinking heavily during high school or 

college ages, were found to be at increased risk for heavy drinking during adulthood. 

LTA is another extension of LCA to repeated-measures data (Collins & Lanza, 2010; 

Collins & Wugalter, 1992). Continuing our examination of adolescent depression, we describe 

LTA in the context of examining stability and change in depression during adolescence. In LTA, 

individuals transition between latent classes over time; in other words, change over time in a 

discrete latent variable is measured. This framework provides a way to estimate and test models 
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of stage-sequential development (i.e., change in latent class membership over time) in 

longitudinal data. This approach allows researchers to estimate the prevalence of latent classes 

and the incidence of transitions to different latent classes over time for multiple groups and to 

predict initial latent class membership and transitions over time. It is worth noting that the 

multiple indicator latent Markov model (Langeheine, 1994; Langeheine & Van de Pol, 1994; 

Macready & Dayton, 1994) is closely related to LTA. Below some applications of LTA in the 

behavioral sciences are briefly described. The LTA mathematical model and related issues are 

then presented by extending the empirical example on adolescent depression. 

Previously we discussed the modeling of substance use onset and smoking cessation 

within the latent class framework. Because individuals' class membership in each of these 

sequences can change over time, it may be interesting to collect data at more than one wave and 

examine patterns of change between consecutive times. The transtheoretical model of behavior 

change presented earlier (see Figure 2) is, in this case, a sequence of four stages: 

precontemplation, contemplation, action and maintenance. LTA has been used to test competing 

models of smoking behavior as individuals move from one stage to another (Velicer, et al., 1996; 

Martin, et al., 1996). As another example, the stage-sequential model of substance use onset has 

been examined extensively using LTA: Collins et al. (1997) examined the relationship between 

heavy caffeine use and adolescent substance use. Other covariates of substance use onset have 

been explored using LTA, including pubertal timing (Hyatt & Collins, 1999), parental 

permissiveness (Hyatt & Collins, 2000) and exposure to adult substance use (Tracy, Collins, & 

Graham, 1997). 
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A similar application of LTA incorporated a DSM-IV diagnosis of alcohol abuse and 

dependence (AAD) at age 21 as the grouping variable, and modeled group differences in the 

transitions through alcohol use during elementary, middle, and high school (Guo, Collins, Hill, & 

Hawkins, 2000). The behavior was characterized with the following four latent classes: Nonuse, 

Initiated Only, Initiated and Currently Using, and Initiated and Currently Using With Heavy 

Episodic Drinking. Different drinking patterns that emerged in middle and high school were 

related to individuals' subsequent AAD diagnosis. Current alcohol use in middle school was 

related to an AAD diagnosis at age 21, as was heavy episodic drinking in high school. This 

evidence suggests the need for different intervention programs at various developmental periods 

throughout adolescence. 

More recently, Maldonado-Molina and Lanza (2010) demonstrated LTA as a useful tool 

for testing research questions motivated by the gateway hypothesis of drug use (Kandel, 2002). 

LTA provided a way to clearly operationalize and test gateway relations between two different 

drugs. Data from a national sample of adolescents were used to test gateway relations between 

cigarettes and marijuana, alcohol and marijuana, and alcohol and cigarettes. Results suggested 

that alcohol use served as a gateway drug for both recent cigarette use and recent marijuana use, 

but statistical evidence was not found for cigarettes as a gateway drug for either alcohol or 

marijuana use. 

LTA has also been used to model change from year to year in the safety of sexual 

behaviors among injection drug users (Posner, Collins, Longshore, & Anglin, 1996). Four 

subscales were used to estimate transitions in latent class membership across two times: 
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knowledge, denial of personal risk, self-protective behaviors, and sexual risk behavior. A six-

class solution that allowed individuals to move to any latent class over time fit the data well. The 

six latent classes were labeled High Risk; Knowledge Only; Safe Sex Only; Sex Risk; Low Risk, 

but Denial; and Low Risk. It was found that individuals moved to a different latent class over 

time quite often, indicating that sexual behavior prevention efforts should be ongoing and 

provided to all injection drug users regardless of the safety of their current sexual behaviors. 

LTA can be used to aid both the design and evaluation of intervention programs. 

Competing models can be fit in order to describe developmental processes for which researchers 

may want to develop intervention programs. In addition, by incorporating a grouping variable, it 

is possible to determine whether certain subgroups of the population are at higher risk, providing 

useful information to researchers as they design interventions for prevention or treatment. For 

example, Collins et al. (1994) explored differences in substance use onset for Anglo, Latino, and 

Asian-American adolescents and discussed possible implications for intervention design. 

LTA also allows researchers to assess the effectiveness of interventions by incorporating 

treatment as a grouping variable. Because the outcome process is broken down into a stage 

sequence, differential effects of the intervention can be identified. The Adolescent Alcohol 

Prevention Trial (Hansen & Graham, 1991) was a school-based substance use intervention 

program. LTA was used to evaluate the effectiveness of a normative education curriculum. An 

overall program effect was detected, such that individuals who received the education were less 

likely to advance in substance use between 7th and 8th grades. More specifically, adolescents who 

received the education were more likely to stay in the No Use latent class in 8th grade if they 
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were in that stage in 7th grade, and less likely to begin advanced use during that time (Graham, 

Collins, Wugalter, Chung, & Hansen, 1991). 

We will present LTA by modeling change in depression from 11th grade to 12th grade. 

Building on the previously described latent class example, we will use the same eight observed 

variables from the Add Health depression index, in this case measured at two times. The sample 

used in this longitudinal analysis includes all adolescents who were in 11th grade at Wave I and 

12th grade at Wave II. We will explore gender differences in the stability of depression over time. 

First an overall model will be fit to the two waves of data for all adolescents, followed by a 

model incorporating the grouping variable sex. 

The mathematical model will be presented in terms of T times of measurement, with 

depression as the dynamic (changing) latent variable. Note that the model can be extended to 

include a grouping variable and covariates; these extensions are discussed below (we refer 

readers to Collins & Lanza, 2010 and Lanza & Collins, 2008 for mathematical details of this 

extended model). There are S1 = 1, ..., S latent classes at Time 1 and S2 = 1, ..., S latent classes at 

Time 2. Let y represent a response pattern, a vector of possible responses to the eight observed 

variables indicating latent class membership at Time 1 and the same eight variables at Time 2 

(i.e., a cell of the contingency table made by crosstabulating all observed variables in the model). 

In this example, the response pattern is a vector made up of the eight depression indicators at 

Time 1 and the same eight indicators measured at Time 2. Let Y represent the complete array of 

response patterns. The LTA model can be expressed as follows. Using an indicator function 
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.(/�,0 = ��,0) that equals 1 when response ��,0 is given to variable j at Time 1, and equals 0 

otherwise, the probability of observing a particular response pattern, P(Y = y), is expressed as  
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where 845 is the probability of membership in latent class ?� at Time 1 (e.g. the probability of 

being in the Sad latent class in 11th grade); 94:|45 is the probability of membership in latent class 

?@ at Time 2 conditional on membership in latent class ?� at Time 1 (e.g. the probability of 

membership in the Sad latent class in 12th grade given membership in the Not-Depressed latent 

class in 11th grade); and �0,�,��,>|4> is the probability of response ��,0 to observed variable � at Time 

1, conditional on membership in latent class ?0 at Time 1 (e.g., the probability of reporting that 

one “Could not shake the blues” in 11th grade given membership in the Sad latent class at that 

time). In general, there can be any number of observed variables and response categories, and the 

number of response categories can vary across variables. As in LCA, LTA employs the EM 

algorithm. Issues of model selection and fit are identical to those in the latent class framework. 

The use of parameter restrictions serves the same purpose as in a latent class framework. 

However, there are several reasons why these restrictions often play a larger role in LTA models. 

First, because complex models are often estimated in LTA, the number of parameters involved 

can be quite large. Imposing restrictions on the parameters can greatly aid in model 

identification. Second, as in all longitudinal models, it is important to consider the issue of 

measurement invariance over time. This can be explored by imposing constraints across the sets 
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of ρ parameters, or item-response probabilities, estimated at each time. Constraining these 

parameters to be equal across times ensures that the meaning of the latent classes remains 

consistent across times. If the measurement is structurally identical at both times then changes in 

the class membership over time can be attributed solely to development rather than development 

mixed with changes in the relations between the indicators and the latent variable. Third, 

parameter restrictions often play an important theoretical role in the transition probabilities; 

restrictions can be imposed to test the nature of development over time. For example, models 

allowing all the τ parameters to be freely estimated (implying that individuals can move between 

latent classes freely over time) can be compared to models which do not allow backsliding to 

stages earlier in a stage sequence by fixing certain τ parameters to 0. 

Table 6 presents results from a latent transition model with five latent classes of 

depression across two times. Measurement invariance across time was tested by comparing a 

model with all ρ parameters estimated freely to one in which ρ parameters were constrained to be 

equal across time. The G2 difference test for these nested models is G2
diff=33.1 with 40 df, p > 

.05. This test provides evidence that measurement invariance over time holds. Therefore, all 

subsequent findings are based on the more parsimonious model (i.e., one in which measurement 

was constrained to be equal over time). 

Table 6 about here 
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The depression latent class prevalences at each grade show that the overall proportion of 

students at each level is quite stable between 11th and 12th grades, with a slightly higher 

proportion in the Non-Depressed latent class in 12th grade. The matrix of transition probabilities 

provides information about intra-individual change in depression between 11th and 12th grades. 

Elements on the diagonal are bolded; these numbers represent the probability of membership in a 

particular depression latent class in 12th grade conditional on membership in the same depression 

latent class in 11th grade. Interestingly, it is estimated that 75% of adolescents in the Non-

Depressed latent class at 11th grade were in that same latent class a year later. The probability of 

being in the same depression latent class over time is somewhat lower for the Depressed latent 

class (65%), and considerably lower for the remaining three groups. 

Multiple-Groups LTA and LTA with Covariates 

Grouping variables and covariates can be incorporated in LTA in much the same way as 

in LCA (see Collins & Lanza, 2010 for a detailed presentation of LTA, including multiple-

groups LTA and LTA with covariates). Multiple-groups LTA is useful when a test of 

measurement invariance across groups is desired; often of more scientific interest is an 

examination of group differences in latent class prevalences and in transition probabilities. In our 

empirical demonstration we next incorporate gender as a grouping variable (N=538 males, 

N=506 females) in order to examine gender differences in the prevalence of depression classes 

and in the incidence of transitions over time in depression. The ρ parameters were constrained to 

be equal across time and gender so that the latent classes of depression are defined in the same 

way in 11th and 12th grades for males and females. Table 7 shows the latent class prevalences at 

each time and the transition probabilities for males and females. As seen by the overall latent 
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class membership probabilities, the prevalence of the Disliked latent class increases over time for 

males, from 23% to 27%, whereas the prevalence decreases for females, from 17% to 12%. The 

relative increase in the prevalence of the Non-Depressed latent class was larger for females (26% 

to 35%) than for males (37% to 39%). 

Table 7 about here 

Overall, the pattern of transition probabilities appears to be generally similar for males 

and females. For example, 72% of 11th-grade males in the Non-Depressed latent class and 42% 

of those in the Sad latent class are in this same latent class in 12th grade. Similar rates of 

membership in the same latent class over time are observed for females (79% for Non-Depressed 

and 45% for Sad). However, several interesting but subtle gender difference in the transition 

probabilities emerge. Notice that, among adolescents in the Non-Depressed, Sad, Disliked, or 

Sad+Disliked latent class in 11th grade, males appear to be more likely than females to transition 

to (or remain in) the Disliked latent class in 12th grade. In contrast, among adolescents in the 

Disliked latent class, females appear to be more likely than males to transition to the Depressed 

latent class (20% for females versus 5% for males). These parameter estimates also indicate that 

females are less likely than males to remain in the Depressed latent class over time (54% for 

females versus 79% for males). 

Covariates can be included in LTA models in order to predict initial latent class 

prevalences or to predict transitions over time between latent classes (e.g., Humphreys & Janson, 

2000; Lanza & Collins, 2008; Pfefferman, et al., 1998; Reboussin, Reboussin, Liang, & 

Anthony, 1998). In the current example, including covariates would allow us to address 
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questions such as (1) “How does involvement in high school sports relate to depression latent 

class membership in 11th grade?” (2) “Does this relation vary across gender?” and (3) “Given 

11th-grade depression class, how is regular alcohol use related to 12th-grade depression class?”  

As another example of LTA with covariates, Lanza and Collins (2008) fit a latent 

transition model of adolescent sexual risk behavior across three annual time points. The five 

latent classes that emerged were Nondaters, Monogamous, Daters, Multi-Partner Safe, and 

Multi-Partner Exposed. By including a covariate measuring recent heavy episodic drinking 

(drunkenness), they were able to address questions including (1) “How does drunkenness relate 

to membership in the five latent classes?” and (2) "For each initial class of sexual risk behavior, 

how is drunkenness related to the probability of transitioning to a latent class characterized by 

high-risk sexual behavior?” The authors found that adolescents who reported drunkenness at 

Time 1 were 8.4 times more likely than adolescents not reporting drunkenness to belong to the 

high-risk class Multi-Partner Exposed relative to the Non-Daters class. Further, Time 1 

drunkenness was found to be a significant risk factor for making a transition to high-risk sexual 

behavior, particularly among adolescents who were initially in the Non-Daters and Daters latent 

classes. The inclusion of covariates in LTA can provide a nuanced view of the behavior change. 

SOME RECENT EXTENSIONS TO LCA 

Here we describe several extensions of LCA and LTA, as well as other closely-related 

finite mixture models that hold much promise for addressing questions in psychology research. 
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Associative LTA 

Recently, the LTA framework has been extended to model two developmental processes 

simultaneously over time (Bray, Lanza, & Collins, 2010; Flaherty, 2008a,b). Associative LTA 

(ALTA) can be used to address a number of interesting research questions, including how one 

discrete process (e.g., transitions through latent classes of substance use) predicts another (e.g., 

transitions through latent classes of depression). For example, this approach would be useful to 

address questions about how transitions over time in depression are linked to transitions in 

drinking patterns. Suppose we wish to examine initial level and changes in depression (say, as 

modeled in our example discussed previously) as they relate to initial level and changes in 

drinking patterns. Some questions may pertain to a single time of measurement; for example, 

how are people in various drinking pattern latent classes (e.g., No Use; Infrequent Light 

Drinking; Infrequent Heavy Drinking; Frequent Heavy Drinking) at one time of measurement 

distributed among depression latent classes? Are Frequent Heavy Drinkers more likely to be in 

one depression latent class than another? Also, are Frequent Heavy Drinkers more likely to be in 

a particular depression latent class than Infrequent Heavy Drinkers? Other questions may pertain 

to change over time. With ALTA, interesting and complex patterns of contingent change can be 

examined. For example, are people who change from No Use to Infrequent Heavy Drinking, 

compared to those who remain in the No Use latent class, more likely to transition from no 

Depression to a particular depression latent class? Are people who remain in the Infrequent Light 

Drinking latent class more or less likely to remain in the No Depression latent class, compared 

with those who advance from the Infrequent Light Drinking latent class to a more advanced level 

of drinking behavior? 
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ALTA can be used to examine cross-sectional and longitudinal associations between 

processes, which may stem from lagged or concurrent effects of one process on the other. It can 

also be used to test specific hypotheses about these effects. Applications of the ALTA approach 

have examined the links between alcohol use and sexual behavior (Bray et al., 2010), tobacco 

use and alcohol use (Flaherty, 2008a), psychological state and substance use (Flaherty, 2008b), 

and negative affect and alcohol use (Witkiewitz & Villarroel, 2009).  

Group-Based Trajectory Analysis 

Over the past decade, an extension of LCA called group-based trajectory analysis (Nagin, 

2005; Nagin & Tremblay, 1999) or general growth mixture modeling (Muthén & Shedden, 1999) 

has been applied in many studies. Using this framework, heterogeneity in intra-individual 

development is examined by modeling subgroups that are identified by individual growth 

parameters, such as intercept and slope. In other words, two or more latent classes are estimated, 

each of which is characterized by a different mean growth curve trajectory. For example, Nagin 

and Tremblay used this approach to identify four latent classes of individuals based on their 

trajectory in physical aggression from age 6 to 15. The latent classes included a subgroup 

characterized by low aggressive behavior over time (14.4%), a moderate declining subgroup 

characterized by desistance in adolescence (53.7%), a high declining subgroup characterized by 

elevated aggression in childhood but a modest level in adolescence (27.6%), and a subgroup of 

individuals displaying chronic aggression across the whole range of ages (4.3%). Predictors of 

latent class membership can be included as covariates in this framework in order to study 

characteristics that are related to the different developmental patterns. 



Latent Class Analysis    46 

Other Variations of Mixture Models 

Mixture models such as LCA provide an opportunity to explore and explain 

heterogeneity in populations by identifying a set of subgroups comprised of individuals with 

shared characteristics. ALTA and group-based trajectory analysis are two different approaches to 

understanding heterogeneity in developmental processes or behavioral patterns over time. There 

are numerous other mixture models that hold promise for research in psychology; an edited book 

by Hancock and Samuelson (2007) includes introductions to and applications of several of these. 

One such model is the mixture item response theory (IRT) model (e.g., Mislevy, Levy, 

Kroopnick, & Rutstein, 2008), which relaxes the assumption that the performance tasks behave 

in the same way for all examinees. This approach allows the examinee and task parameters to be 

conditioned on latent class, and may be useful in detecting population subgroups based on, for 

example, the cognitive strategies they employed in performing tasks. Another mixture model that 

may be useful in psychological research is the factor mixture model (Lubke & Spies, 2007). An 

example by Kuo, Aggen, Prescott, Kendler, and Neale (2008) demonstrated how a model 

involving both a continuous factor and a latent class variable provided better fit to alcohol 

dependence measures than either a factor model or a latent class model alone. The three-class 

factor model was used to identify groups labeled Non-Problem Drinking, Moderate Dependence, 

and Severe Dependence. This type of mixture model may provide a basis for an alternative 

classification system to the DSM-IV diagnostic system. 

Multilevel LCA 

Random effects (or mixed) models are popular in social science research. They provide a 

powerful way to accommodate clustered responses, which violate the standard data analysis 
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assumption that observations are independently sampled. Much of the work in this domain has 

been in the area of regression modeling (e.g., Raudenbush & Bryk, 2002; Hedeker & Gibbons, 

1994; Hedeker & Mermelstein, 1998). The inclusion of random effects in both latent class (Qu, 

Tan, & Kutner, 1996) and latent transition (Humphreys, 1998) models has been discussed, and 

multilevel LCA is receiving growing attention. For instance, multilevel LCA recently has been 

used to examine cigarette smoking in rural communities (Henry & Muthén, 2010), individual- 

and community-level predictors of heavy alcohol use (Rindskopf, 2006), intervention effects in 

group-randomized trials (Van Horn, et al., 2008), and gender differences in mathematics 

achievement (Muthén & Asparouhov, 2009). 

By adding random effects to the latent class model, it is possible to expand the 

assumption of conditional independence to include the situation where item-response 

probabilities are conditionally independent given latent class membership and unmeasured, 

subject-specific random effects. These random effects account for unmeasured factors that 

induce relations among item responses beyond those due to latent class membership. Two 

common situations that often employ random effects are repeated measures on the same person 

and a design with people nested within organizations like schools.  

Consider the case of students nested within classrooms. The incorporation of random 

effects makes it possible to account for the fact that students in the same classroom tend to report 

more similarly than students in different classrooms. Rather than measuring and modeling all the 

different factors that could be causing this observed similarity, random effects models account 

for the similarity automatically. This would allow, for example, the probability of belonging to a 
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particular depression latent class to vary across classrooms and the item-response probabilities 

for the depression latent classes to be held constant across classrooms. This conceptualization of 

multilevel LCA is known as the parametric approach (Vermunt, 2003, 2008; Asparouhov & 

Muthén, 2008). A competing nonparametric approach has also been discussed (Vermunt, 2003, 

2008; Asparouhov & Muthén, 2008). It could be used to identify, for example, latent classes of 

classrooms that have similar high and low probabilities of membership in the depression latent 

classes in order to account for the random effects of classrooms. These two approaches focus on 

latent class-specific random effects, but it is also possible to incorporate item-specific random 

effects (Asparouhov & Muthén, 2008; Henry & Muthén, 2010) that can be used to examine, for 

example, how classrooms influence the individual observed variables that measure the 

depression latent classes. Note that random effects do not normally constitute factors that are of 

substantive interest. If there were additional substantively interesting variables that accounted for 

within-class similarity, then these other factors should be measured and modeled explicitly.  

Additional Types of Indicators 

The latent class model can be generalized to accommodate ordinal and continuous 

indicators. For example, Kim & Böckenholt (2000) presented the stage-sequential ordinal (SSO) 

model. The SSO model estimates stage-sequential development measured by one or more ordinal 

indicators. Measurement error in the ordinal data is estimated according to a graded-response 

model (Samejima, 1969), which assumes that there is an underlying continuous characteristic 

that is discretized to form an ordinal scale. Interval- and ratio-level indicators have been added 

by modeling them as normally distributed, conditional on latent class membership (Moustaki, 

1996). In this model, categorical indicators are treated the same as they are in the basic latent 
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class model and continuous indicators are accommodated by regressing them on the latent class 

variable. As with the categorical indicators in the latent class model, the continuous indicators 

are assumed to be conditionally independent given latent class membership. Just as the item-

response probabilities (ρ parameters) characterize the relation between the latent variable and the 

categorical indicators, means and residual variances of the continuous indicators characterize the 

relation between the continuous indicators and the latent class variable. If the mean levels of a 

continuous indicator are different across the latent classes and the within-class residual variance 

is small, then that observed variable does a good job of discriminating among the classes.  

AREAS FOR FUTURE RESEARCH RELATED TO LCA 

One area where more work is needed is statistical power for testing the fit of complex 

latent class and latent transition models. In order to assess the statistical power of any test 

involving the G2, the distribution of the G2 under the alternative hypothesis, (i.e., the noncentral 

distribution), is needed. Because the central distribution of the G2 is unknown when the 

contingency table is sparse, it follows that the noncentral distribution is also unknown. Of 

course, the usual factors that affect statistical power of a test statistic (namely, sample size, 

choice of alpha, and effect size) operate in this context, which in model selection is the overall 

difference between the true model and the model under consideration. A parametric bootstrap 

procedure can be used to empirically derive the distribution of the G2 test statistic under the 

alternative hypothesis, providing one basis for studying factors related to the power of detecting 

underlying latent classes. 
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In addition to statistical power considerations, there are other sample size considerations 

in LCA and LTA. Sparseness can impair parameter estimation. Several simulation studies 

(Collins and Wugalter, 1992; Collins et al., 1993; Collins & Tracy, 1997) have demonstrated that 

parameter estimation in LTA remains unbiased even in very sparse data tables. However, the 

standard errors of certain parameters can become unacceptably large. This is particularly true for 

the τ parameters, because these transition probabilities are conditioned latent class membership 

at Time 1, and thus often based on considerably smaller Ns than the other parameters. In 

addition, estimation of the effects of covariates on latent class membership and on transition 

probabilities can be increasingly problematic as sparseness increases. This is of particular 

concern when predicting latent class membership or transitions that are quite rare. Bayesian 

methods, specifically the inclusion of data-derived prior information, have been highly effective 

for solving some of the issues related to sparseness in LCA and LTA (e.g., Lanza et al., 2011). 

Another area for future research is relating latent class membership to later outcomes. 

There are currently two dominant approaches, both involving a classify-analyze strategy. The 

first approach is to assign individuals to latent classes based on their maximum posterior 

probability, and then conduct the analysis (e.g., regressing the distal outcome on latent class 

assignment) as if latent class membership is known. This strategy does not take into account 

uncertainty associated with latent class membership; therefore, inference regarding the 

association between the latent class variable and the distal outcome may be biased. The second 

approach, referred to as the multiple pseudo-class draws technique, involves multiple (e.g., 20) 

random assignment to latent classes with probability equal to an individual’s posterior 

probabilities (Wang, Brown, & Bandeen-Roche, 2005). This approach yields multiple datasets, 
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each containing a variable indicating class assignment based on that particular draw. The 

association between latent class membership and the distal outcome is calculated within each 

dataset, and then results are combined across datasets. An advantage of the first approach is that 

the technique is conceptually and computationally straightforward; the primary advantage of the 

pseudo-class draws approach is that it attempts to take uncertainty in latent class membership 

into account by averaging over multiple draws. 

Another area for future consideration is the use of LCA as a measurement model to 

develop assessment tools. Work is being done on this topic in sociology with a focus on survey 

data (see Biemer, 2011), and much of this work may be relevant to research in psychology. Use 

of LCA as a measurement model is particularly important if one plans to assign people to latent 

classes; for example, in the context of adaptive treatment assignment. The latent class model is, 

in fact, a measurement model for an unobserved categorical variable, but in most applications it 

is used in an exploratory fashion, where the latent class solution provides a way to model 

heterogeneity in the data. By using LCA as a measurement model, however, psychologists would 

be able to identify indicators that are most helpful in measuring the underlying variable, as well 

as indicators that are not helpful and might be removed from future surveys. This approach could 

lead to the development of widely-used psychological assessment instruments for measuring 

underlying subgroups that cannot be directly observed. 

CONCLUSIONS 

The usefulness of latent class models in psychological research will continue to grow as 

the model is extended. Important steps have already been taken to improve the utility of this 
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method, including extensions to longitudinal data, improvements in the assessment of model fit, 

and the incorporation of continuous predictors of latent class membership. Additional work in 

areas such as estimation with small sample sizes, Bayesian methods, concomitant variables and 

two-sequence models will further increase the power of latent class and related methods. LCA 

and LTA play an important role in understanding categorical latent constructs in psychology and 

their related processes of change over time. 
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Table 1 

Frequency Distributions for Eight Observed Variables from the Add Health Feelings Scale: 

Percent of Students who Reported Symptom Sometimes/A lot/Most/All of the time During the 

Past Week 

 

Time 1: 
11th-Grade 
Frequency 
(Valid %) 

Time 2: 
12th-Grade 
Frequency 
(Valid %) 

 Male Female Male Female 
Sad Indicators 

Could not shake blues 147 
(27.3) 

191 
(37.8) 

110 
(24.1) 

165 
(37.2) 

Felt depressed 197 
(36.6) 

248 
(49.1) 

153 
(33.6) 

200 
(45.1) 

Felt lonely 187 
(34.8) 

222 
(44.0) 

148 
(32.5) 

184 
(41.4) 

Felt sad 230 
(42.8) 

286 
(56.6) 

175 
(38.4) 

238 
(53.6) 

Failure Indicators 
Thought life was a failure 74 

(13.8) 
74 

(14.7) 
62 

(13.6) 
75 

(16.9) 
Felt life not worth living 53 

(9.9) 
56 

(11.1) 
40 

(8.8) 
48 

(10.8) 
Disliked Indicators 

People unfriendly to you 178 
(33.1) 

179 
(35.5) 

154 
(33.8) 

150 
33.78 

People disliked you 163 
(30.3) 

185 
(36.7) 

137 
(30.0) 

146 
(32.9) 

 

Note: All indicators were coded 1 = never/rarely during the past week, 2 = sometimes/a 

lot/most/all of the time during the past week. 

Note: N = 1043 at Time 1, N = 900 at Time 2. 
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Table 2 

Goodness-of-Fit Criteria for Various Latent Class Models at Time 1 (11th Grade) 

Number 
of 

Classes 

Degrees 
of 

Freedom G2 AIC BIC CAIC a-BIC BLRT 
Entropy 

R2 
Solution 

% 
1 247 1837.5 1853.5 1893.1 1901.1 1867.7 --- 1.0 100 
2 238 557.6 591.6 675.7 692.7 621.7 .001 .78 100 
3 229 400.4 452.4 581.1 607.1 498.5 .001 .73 35.3 
4 220 286.4 356.4 529.7 564.7 418.5 .001 .72 99.4 
5 211 240.6 328.6 546.4 590.4 406.7 .001 .76 47.7 
6 202 210.6 316.6 578.9 631.9 410.6 .007 .77 14.7 
7 193 179.2 303.2 610.1 672.1 413.2 .002 .76 25.0 
8 184 158.6 300.6 652.1 723.1 426.6 .102 .75 34.9 

 

Note: Solution % is the percentage of times solution was selected out of 1000 random sets of 

starting values. Dashes indicate criterion was not calculated for the model. Bold indicates 

selected model. 
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Table 3 

Parameter Estimates and Standard Errors for Latent Class Model at Time 1: Latent Classes of 

Depression in 11th Grade 

 1 
Non-

depressed 

2 
 

Sad 

3 
 

Disliked 

4 
Sad + 

Disliked 

5 
 

Depressed 
 Latent Class Prevalences 

 .39 
(.04) 

.23 
(.02) 

.17 
(.04) 

.15 
(.03) 

.07 
(.02) 

Observed Variable Item-Response Probabilitiesa 

Could not shake blues .03 
(.01) 

.54 
(.05) 

.17 
(.06) 

.66 
(.06) 

.90 
(.05) 

Felt depressed .06 
(.02) 

.73 
(.05) 

.24 
(.07) 

.86 
(.06) 

1.00 
(.00) 

Felt lonely .07 
(.02) 

.58 
(.04) 

.33 
(.08) 

.77 
(.05) 

.92 
(.05) 

Felt sad .14 
(.03) 

.80 
(.04) 

.38 
(.08) 

.87 
(.04) 

.94 
(.04) 

Thought life was a failure .01 
(.01) 

.11 
(.03) 

.10 
(.04) 

.23 
(.06) 

.90 
(.09) 

Felt life not worth living .00 
(.01) 

.06 
(.02) 

.11 
(.04) 

.10 
(.06) 

.85 
(.15) 

People unfriendly to you .13 
(.03) 

.17 
(.04) 

.64 
(.08) 

.67 
(.04) 

.70 
(.06) 

People disliked you .04 
(.03) 

.00 
(.00) 

.68 
(.15) 

1.00 
(.00) 

.77 
(.06) 

 

a Probability of reporting symptom “sometimes/a lot/most/all of the time” during the past week. 

Note: Item-response probabilities greater than .50 appear in bold to facilitate interpretation. 
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Table 4 

Parameter Estimates and Standard Errors by Gender for Time 1 (11th Grade) Five-Class Latent 

Class Model, Item-Response Probabilities Constrained Equal Across Gender 

 
 
Gender 

1 
Non-

Depressed* 

2 
 

Sad* 

3 
 

Disliked 

4 
Sad + 

Disliked* 

5 
 

Depressed 
  Latent Class Prevalences 
Male 
 
Female 

 
 
 

.44 
(.04) 
.30 

(.04) 

.18 
(.03) 
.25 

(.05) 

.20 
(.05) 
.16 

(.05) 

.12 
(.03) 
.22 

(.04) 

.06 
(.02) 
.06 

(.02) 
Observed Variable Item-Response Probabilitiesa 
Could not shake blues .03 

(.01) 
.54 

(.05) 
.14 

(.05) 
.66 

(.06) 
.89 

(.05) 
Felt depressed .05 

(.02) 
.74 

(.05) 
.26 

(.07) 
.83 

(.05) 
1.00 
(.01) 

Felt lonely .07 
(.02) 

.57 
(.04) 

.30 
(.07) 

.79 
(.05) 

.92 
(.05) 

Felt sad .13 
(.03) 

.80 
(.04) 

.37 
(.07) 

.87 
(.04) 

.94 
(.04) 

Thought life was a failure .02 
(.01) 

.10 
(.03) 

.08 
(.04) 

.24 
(.06) 

.93 
(.09) 

Felt life not worth living .00 
(.01) 

.05 
(.02) 

.10 
(.03) 

.12 
(.05) 

.85 
(.13) 

People unfriendly to you .11 
(.03) 

.13 
(.07) 

.62 
(.08) 

.68 
(.06) 

.69 
(.07) 

People disliked you .04 
(.03) 

.02 
(.07) 

.61 
(.12) 

.93 
(.10) 

.77 
(.06) 

 

* Hypothesis test for gender difference in latent class prevalence rates statistically significant at 

the .05 level. 

a Probability of reporting symptom “sometimes/a lot/most/all of the time” during the past week 

Note: Item-response probabilities greater than .50 appear in bold to facilitate interpretation. 
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Table 5 

Parameter Estimates and Odds Ratios for Effect of Average Grade on 11th Grade Latent Class 

Membership  

 1 
Non-

depressed 

2 
 

Sad 

3 
 

Disliked 

4 
Sad + 

Disliked 

5 
 

Depressed 
Beta 
(SE) 
 

--- 
 

-.19 
(.14) 

-.53 
(.18) 

-.07 
(.20) 

-.78 
(.20) 

Odds Ratio 
(CI) 
 

--- 
 

.82 
[.63, 1.08] 

.59 
[.41, .84] 

.93 
[.63, 1.38] 

.46 
[.31, .68] 

Inverse  
Odds Ratio 

--- 1.22 
[.93, 1.59] 

1.69 
[1.19, 2.44] 

1.08 
[.72, 1.59] 

2.17 
[1.47, 3.23] 

 

Note: Dashes indicate reference latent class. Average grade was a significant predictor of latent 

class membership (p < .01). 

Note: N = 1035. 
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Table 6 

Parameter Estimates for Time 1 (11th Grade) to Time 2 (12th Grade) Five-Class Latent 

Transition Model, Item-Response Probabilities Constrained Equal Across Time 

 1 
Non-

Depressed 

2 
 

Sad 

3 
 

Disliked 

4 
Sad + 

Disliked 

5 
 

Depressed 
  Latent Class Prevalences 
Time 1: 
Time 2: 

11th grade 
12th grade 

.32 

.37 
.26 
.23 

.19 

.18 
.14 
.12 

.08 

.10 
 
Observed Variable 

Item-response Probabilities: Probability of Reporting Symptom 
“Sometimes/A lot/Most/All of the time” During the Past Week 

Could not shake blues .03 .54 .09 .60 .85 
Felt depressed .05 .71 .13 .80 .96 
Felt lonely .06 .55 .23 .78 .85 
Felt sad .11 .78 .26 .87 .92 
Thought life was a failure .01 .12 .05 .19 .88 
Felt life not worth living .01 .04 .05 .09 .77 
People unfriendly to you .07 .17 .60 .81 .63 
People disliked you .00 .11 .55 .96 .77 
 Transition Probabilities 
Time 1 Latent Class Time 2 Latent Class 
Non-depressed .75 .13 .09 .02 .01 
Sad .32 .46 .08 .09 .06 
Disliked .25 .05 .50 .15 .06 
Sad + Disliked .04 .24 .21 .39 .12 
Depressed .00 .21 .04 .09 .65 
 

Note: Item-response probabilities greater than .50 and transition probabilities on the diagonal of 

the matrix appear in bold to facilitate interpretation. 

Note: N=1044. 
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Table 7 

Parameter Estimates by Gender for Time 1 (11th Grade) to Time 2 (12th Grade) Five-Class 

Latent Transition Model 

  1 
Non-

depressed 

2 
 

Sad 

3 
 

Disliked 

4 
Sad + 

Disliked 

5 
 

Depressed 
Latent Class Prevalences 

 Time 1: 
 
Time 2: 

Male 
Female 
Male 
Female 

.37 

.26 

.39 

.35 

.21 

.29 

.16 

.25 

.23 

.17 

.27 

.12 

.10 

.19 

.08 

.17 

.09 

.10 

.09 

.12 
Transition Probabilities 

Time 1 Latent Class Time 2 Latent Class 
Male 

Non-Depressed .72 .13 .13 .00 .02 
Sad .33 .42 .16 .07 .02 
Disliked .22 .02 .60 .12 .04 
Sad + Disliked .03 .24 .39 .29 .05 
Depressed .05 .00 .04 .12 .79 

Female 
Non-Depressed .79 .13 .05 .04 .00 
Sad .32 .45 .04 .13 .06 
Disliked .27 .09 .38 .19 .06 
Sad + Disliked .03 .23 .11 .43 .20 
Depressed .00 .31 .09 .07 .54 

 

Note: Measurement invariance across time (i.e., Time 1 and Time 2) and across groups (i.e., 

male and female) imposed. 

Note: Transition probabilities on the diagonal of the matrix appear in bold to facilitate 

interpretation. 
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Figure 1 

Latent Variable Frameworks 
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Figure 2 

Stages of Change Construct from the Transtheoretical Model 
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Figure 3 

Probability of Reporting Symptom Sometimes/A Lot/Most/All of The Time Conditional on 

Depression Latent Class  
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Figure 4 

Probability of Membership in Each Depression Latent Class by Gender 

 

 


